

Grade 10 Compulsory Mathematics

IMPORTANT FORMULA

CHEAT SHEETS

SETS

$$n(P \cup Q) = n(P) + n(Q) - n(P \cap Q)$$

$$n(P \cap Q) = n(P) + n(Q) - n(P \cup Q)$$

$$n(U) = n(P \cup Q) + n(P \cup Q)'$$

$$n(P \cup Q)' = n(U) - n(P \cup Q)$$

$$n(P \cup Q \cup R) = n(P) + n(Q) + n(R) - n(P \cap Q) - n(Q \cap R) - n(R \cap P) + n(P \cap Q \cap R)$$

$$n(P \cap Q \cap R) = n(P \cup Q \cup R) - n(P) - n(Q) - n(R) + n(P \cap Q) + n(Q \cap R) + n(R \cap P)$$

Profit/Loss and MP, VAT and Discount

(Note: It is all about C.P when you calculate profit% or loss%)

Discount = M.P - S.Pl and Discount = Discount% of M.P.

VAT = S.P2 - S.P1 and VAT = VAT% of S.P1

S.P1 = M.P- Discount

S.P2 = S.P1 + VAT

(Note: VAT is always added and Discount is subtracted)

S.P = Selling Price C.P = Cost Price

M.P = Marked Price VAT = Value Added Tax

S.P1 = Selling price after discount S.P2 = Selling price after VAT and discount

Simple and Compound Interest

$$S.I = \frac{P^*T^*R}{100}$$

Compound Interest =
$$P(1 + \frac{R}{100})$$

Compound Interest (semi-annually) =
$$P(1 + \frac{R}{200})^{21}$$

Compound Amount =
$$P\left(\left(1 + \frac{R}{100}\right)^T + 1\right)$$

Compound Amount (semi-annually) =
$$P(1 + \frac{R}{200})^{2T} + 1$$

S.I = Simple Interest P = Principle T = Time (in years)

R = Rate (in %)

Population Growth and Population Depreciation

Population increased (G) =
$$\frac{P*T*R}{100}$$

Depreciation =
$$Pi(1 - \frac{R}{100})^T$$

Amount after depreciation =
$$Pi \left(1 - \left(1 - \frac{R}{100} \right)^{I} \right)$$

P = Previous Population

Pi = Original Price

T = Time (in years)

R = Rate (in %)

Mensuration

Note: CSA is calculated for shapes having a curved surface.

Mensuration

a = length of base, r = radius, l = slant height, h = height Note: CSA is calculated for shapes having a curved surface.

Algebra

$$(a - b)^{2} = a^{2} - 2ab + b^{2} \qquad (a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a - b) (a + b) = a^{2} - b^{2}$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a - b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b)^{3} - 3ab(a + b)$$

$$a^{3} - b^{3} = (a - b)^{3} + 3ab(a - b)$$

Area of Triangle

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$
 where

Area of Equilateral Triangle =
$$\frac{\sqrt{3}}{4}$$
 a where, a = length of either side

Area of Isosceles Triangle =
$$\frac{b}{2} \sqrt{a^2 - \frac{b^2}{4}}$$

where, a = common side b = length of base

Circle Theorems

S.N	Statement	Figure
1.	Theorem 1: Equal arcs of a circle subtend equal angles, at the center of the circle.	The state of the s
2.	Converse of Theorem 1 : If two angles subtended at the center, by two arcs are equal, then the arcs are of equal length.	A CONTRACTOR OF THE PARTY OF TH
3.	Theorem 2 : Equal chords of a circle subtend equal arcs.	

Circle Theorems

S.N	Statement	Figure
4.	Converse of Theorem 2 : Equal arcs of a circle subtend equal chords.	
5.	Theorem 3: The perpendicular to a chord bisects the chord if drawn from the center of the circle.	The state of the s
6.	Theorem 4 : Inscribed angles standing on the same base are equal.	

Circle Theorems

S.N	Statement	Figure
7.	Theorem 5 : Angle formed by the semicircle opposite to the diameter is 90 degrees.	90.
8.	Theorem 6: Inscribed angle is half of the center angle standing on the same base.	0 22 22 B
9.	Theorem 7 : Opposite angles in a cyclic quadrilateral is supplementary.	A TROIT C

Circle Theorems (Tangents)

S.N	Statement	Figure
1.	Theorem 1: The tangent to the circle at any point is the perpendicular to the radius of the circle that passes through the point of contact.	
2.	Theorem 2 : The lengths of tangents drawn from an external point to a circle are equal.	i A
3.	Theorem 3: Exterior angle formed by the tangent with a chord is equal to the opposite interior angle of the chord.	C R

Statistics

$$Mean = \underbrace{\sum x}_{n}$$

(Individual series)

Mean =
$$\sum fx$$
 (Discrete and Continuous series)

Median =
$$\frac{N+1}{2}$$
th term

(Individual series)

Median =
$$\frac{N+1}{2}$$
 th term

(Discrete series)

Q1 (Lower Quartile) =
$$\frac{N+1}{4}$$
 th term

(Discrete series)

Note: For Discrete Series, Median is the value of corresponding x which has c.f just greater than the value obtained after the median calculation. (Similar with Q1 and Q3)

Statistics

Note: For Continuous Series, Median class is the value of the corresponding range of x which has c.f just greater than the value obtained after the median class calculation. (Similar with Q1 and Q3)

Median = I+
$$\left(\frac{\frac{N}{2} - cf}{f}\right)$$
 * h (Continuous series)

Q1 = I +
$$\left(\frac{N}{4 - cf}\right)$$
 * h (Continuous series)

Statistics

Q3 = I +
$$\left(\frac{3N}{4 - cf}\right)$$
* h (Continuous series)

Here, I = lowest value of the range
h = length of range
f = corresponding value of frequency
c.f = value of c.f one above the corresponding value

Mode is the value of frequency which occurs the most.

Standard Deviation(
$$\sigma$$
) = $\sqrt{\left(\frac{X^2}{N}\right) - \left(\frac{X}{N}\right)^2}$

Variance (V) =
$$\sigma^2$$

Trigonometry

Reciprocal Identity

$$cosec \theta = 1/sin \theta$$

$$\sec \theta = 1/\cos \theta$$

$$\cot \theta = 1/\tan \theta$$

$$\sin \theta = 1/\csc \theta$$

$$\cos \theta = 1/\sec \theta$$

$$\tan \theta = 1/\cot \theta$$

Trigonometry

Trigonometry Table

Angles (In Degrees)	0°	30°	45°	60°	90°	180°	270°	360°
Angles (In Radians)	0	π/6	π/4	π/3	π/2	π	3π/2	2π
sin	0	1/2	1/√2	√ <mark>3/</mark> 2	1	0	-1	0
cos	1	√3/2	1/√2	1/2	0	-1	0	1
tan	0	1/√3)U 1	√3	8	0	8	0
cot	∞	√3	1	1/√3	0	8	0	o
cosec	8	2	√2	2/√3	1	8	-1	∞
sec	1	2/√3	√2	2	8	-1	8	1

Trigonometry

Probablity

Probability of occurrence = <u>Number of occurrence</u> Total number of events

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
(for non mutually exclusive)

$$P(A \cup B) = P(A) + P(B)$$

(for mutually exclusive)