RONB EDU

Grade 10

Compulsory Mathematics

IMPORTANT FORMULA
CHEAT SHEETS

Ronb Education(RONB Edu)

SETS

$n(P \cup Q)=n(P)+n(Q)-n(P \cap Q)$
$n(P \cap Q)=n(P)+n(Q)-n(P \cup Q)$
$n(U)=n(P \cup Q)+n(P \cup Q)^{\prime}$
$n(P \cup Q)=n(U)-n(P \cup Q)$
$n(P \cup Q \cup R)=n(P)+n(Q)+n(R)-$
$n(P \cap Q)-n(Q \cap R)-n(R \cap P)+n(P \cap Q \cap R)$
$n(P \cap Q \cap R)=n(P \cup Q \cup R)-n(P)-n(Q)-$ $n(R)+n(P \cap Q)+n(Q \cap R)+n(R \cap P)$

Ronb Education(RONB Edu)

Profit/Loss and MP, VAT and Discount

Profit $=$ S.P - C.P and Profit $=$ Profit\% of C.P
Loss = C.P - S.P and Loss = Loss\% of C.P
Profit\% $=\frac{\text { Profit }}{\text { C.P }}$ * 100\%
Loss\% = Loss * ${ }_{\text {C. }}$ 100\%(Note: It is all about C.P when you calculate profit\% or loss\%)
\squareDiscount = M.P - S.Pl and Discount $=$ Discount\% of M.P
VAT = S.P2 - S.P1 and VAT = VAT\% of S.P1
S.P1 = M.P- Discount
S.P2 = S.P1 + VAT
(Note: VAT is always added and Discount is subtracted)
S.P = Selling Price C. $P=$ Cost Price
M.P = Marked Price \quad VAT $=$ Value Added Tax
S.P1 = Selling price after discount S.P2 = Selling price after VAT and discount
Ronb Education(RONB Edu)

Simple and Compound Interest

$\mathrm{S} . \mathrm{I}=\frac{\mathrm{P}^{*} \mathrm{~T}^{*} \mathrm{R}}{100}$

Compound Interest $=P\left(1+\frac{R}{100}\right)^{\top}$

Compound Interest(semi-annually) $=P\left(1+\frac{R}{200}\right)^{2 T}$

Compound Amount $={ }^{\mathrm{P}}\left(\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}+1\right)$

Compound Amount (semi-annually) $\left.=P\left(1+\frac{\mathrm{R}}{200}\right)^{2 \mathrm{~T}}+1\right)$
S.I = Simple Interest

P = Principle
$\mathrm{T}=$ Time (in years)
R = Rate (in \%)

Ronb Education(RONB Edu)

Population Growth and Population Depreciation

$$
\text { Population increased }(\mathrm{G})=\frac{\mathrm{P}^{*} \mathrm{~T}^{*} \mathrm{R}}{100}
$$

New Population $=\mathbf{P}+\mathbf{G}$

Depreciation $=\operatorname{Pi}\left(1-\frac{R}{100}\right)^{\top}$
Amount after depreciation $=\operatorname{Pi}\left(1-\left(1-\frac{R}{100}\right)^{\top}\right)$

```
P = Previous Population
Pi = Original Price
T = Time (in years)
R = Rate (in %)
```


Mensuration

Shapes

 L.S.A or C.S.A T.S.AVolume
Prism

P*
$P=$ perimeter of base
I = length

$2 \pi r h$

	$2 \pi r h+2 \pi r^{2}$
$=$	$2 \pi r(r+h) \quad \pi r^{2} h$

Sphere

$4 \pi r^{2}$
$4 \pi r^{2}$
$\frac{4}{3} \pi r^{3}$

$2 \pi r^{2}$
$3 \pi r^{2}$
$\frac{2}{3} \pi r^{3}$

Note: CSA is calculated for shapes having a curved surface.

Ronb Education(RONB Edu)

Mensuration

Shapes

L.S.A or C.S.A T.S.A

Volume

Cone

$2 a l=$| | $2 a l+a^{2}$ |
| ---: | :--- |
| $=$ | $2 a(1+a)$ |

$\frac{1}{3} a^{2} h$

Cube

41^{2}
61^{2}
1^{3}

Cuboid

$2 h(1+b)$
$2(l b+b h+l h)$
Ibh
$\mathrm{a}=$ length of base, $\mathrm{r}=$ radius, $\mathrm{I}=$ slant height, $\mathrm{h}=$ height Note: CSA is calculated for shapes having a curved surface.

Ronb Education(RONB Edu)

Algebra

$$
\begin{aligned}
& (a-b)^{2}=a^{2}-2 a b+b^{2} \quad(a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)(a+b)=a^{2}-b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b) \\
& a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)
\end{aligned}
$$

Ronb Education(RONB Edu)

Area of Triangle

Area $=\frac{1}{2} b^{*} h$ where, $b=$ base and $h=$ height

Area $=\sqrt{s(s-a)(s-b)(s-c)}$ where, $s=\frac{a+b+c}{2}$

Area of Equilateral Triangle $=\sqrt{3} a^{2}$
4 where, $a=$ length of either side
Area of Isosceles Triangle $=\frac{b}{2} \sqrt{a^{2}-\frac{b^{2}}{4}}$
where, $a=$ common side b = length of base

Circle Theorems

S.N	Statement
Theorem 1: Equal arcs of a circle	
subtend equal angles, at the center of	
the circle.	
2.	Converse of Theorem 1: If two angles subtended at the center, by two arcs are equal, then the arcs are of equal length. Theorem $2:$ Equal chords of a circle subtend equal arcs.
	Figure

Ronb Education(RONB Edu)

Circle Theorems

S.N	Statement	Figure
4.	Converse of Theorem 2 : Equal arcs of a circle subtend equal chords.	
5.	Theorem 3 : The perpendicular to a chord bisects the chord if drawn from the center of the circle.	
6.	Theorem 4: Inscribed angles standing on the same base are equal.	

Circle Theorems

| S.N | Statement |
| :--- | :--- | :--- |
| 7. | Theorem 5: Angle formed by the
 semicircle opposite to the diameter is
 90 degrees. |
| Theorem 6 : Inscribed angle is half of | |
| the center angle standing on the same | |
| base. | |
| 9. | Theorem 7 : Opposite angles in a cyclic
 quadrilaterall is supplementary. |
| | |

Ronb Education(RONB Edu)

Circle Theorems (Tangents)

| S.N | Statement |
| :--- | :--- | :--- |
| 1. | Theorem 1: The tangent to the circle at
 any point is the perpendicullar to the
 radius of the circle that passes through
 the point of contact. |
| 2. | Theorem 2 : The lengths of tangents
 arawn from an external point to a circle |
| Theorem 3: Exterior angle formed by | |
| the tangent with a chord is equall to the | |
| opposite interior angle of the chord. | |

Ronb Education(RONB Edu)

Statistics

Mean $=\frac{\sum \mathbf{x}}{\mathbf{n}} \quad \quad$ (Individual series)
Mean $=\frac{\sum \mathrm{fx}}{\mathrm{N}} \quad$ (Discrete and Continuous series)

Median $=\frac{\mathrm{N}+1}{2}$ th term
Median $=\underline{\mathrm{N}+1}$ th term 2
(Individual series)
(Discrete series)
(Discrete series)
(Discrete series)

Note: For Discrete Series, Median is the value of corresponding x which has $c . f$ just greater than the value obtained after the median calculation. (Similar with Q1 and Q3)

Ronb Education(RONB Edu)

Statistics

Median class $=\frac{\mathrm{N}}{2}$ th term (Continuous series)

Q1 class $=\frac{\mathrm{N}}{4}$ th term
 (Continuous series)

Q3 class $=\frac{3 N}{4}$ th term

(Continuous series)

Note: For Continuous Series, Median class is the value of the corresponding range of x which has c.f just greater than the value obtained after the median class calculation. (Similar with Q1 and Q3)

$$
\begin{array}{ll}
\text { Median }=I+\left(\frac{\frac{N}{2}-\mathrm{cf}}{\mathrm{f}}\right) * \mathrm{~h} & \text { (Continuous series) } \\
\text { Q1 }=\mathrm{I}+\left(\frac{\mathrm{N}}{\frac{4}{\mathrm{f}} \mathrm{cf}} \mathbf{f}\right) * \mathrm{~h} & \text { (Continuous series) }
\end{array}
$$

Ronb Education(RONB Edu)

Statistics

$Q 3=I+\left(\frac{3 N}{\frac{4}{f}}\right.$ cf $) * h$

(Continuous series)

Here, I = lowest value of the range
$\mathrm{h}=$ length of range
$\mathrm{f}=$ corresponding value of frequency
c.f = value of c.f one above the corresponding value

Mode is the value of frequency which occurs the most.
Standard Deviation $(\sigma)=\sqrt{\left(\frac{X^{2}}{N}\right)-\left(\frac{X}{N}\right)^{2}}$
Variance (V) $=\sigma^{2}$

Ronb Education(RONB Edu)

Trigonometry

Reciprocal Identity

$\operatorname{cosec} \theta=1 / \sin \theta$
$\sec \theta=1 / \cos \theta$
$\cot \theta=1 / \tan \theta$

$\boldsymbol{\operatorname { s i n }} \theta=1 / \operatorname{cosec} \theta$
$\cos \theta=1 / \sec \theta$
$\tan \theta=1 / \cot \theta$

Ronb Education(RONB Edu)

Trigonometry

Trigonometry Table

Angles (in Degrees)	0°		30°	45°	60°	90°	180°	270°	360°
Angles (In Radians)	0		\%/6	$\pi / 4$	п/3	\%/2	π	3n/2	2π
sin			1/2	$1 / 1 / 2$	$\sqrt{3 / 2}$		0	-1	
cos			V3/2	1/22	1/2	0	-1	0	
tan			1/3	,	$\sqrt{ } / 3$	${ }^{\infty}$	0	\cdots	
cot			$\sqrt{ }$,	1/3	0	\cdots		
cosec			2	$\sqrt{ } / 2$	2//3		\ldots		
sec			2/33	$\sqrt{ } 2$	2	∞	-1	\ldots	

Ronb Education(RONB Edu)

Trigonometry

CAST Rule

Probablity

Probability of occurrence $=$ Number of occurrence Total number of events

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

(for non mutually exclusive)
$P(A \cup B)=P(A)+P(B)$
(for mutually exclusive)

