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Chapter 1: Solution of Nonlinear Equations 

Introduction 

 

Analysis versus Numerical Analysis 

The word analysis in mathematics usually means to solve a problem through 

equations. The equations must then be reduced to an answer through procedures 

of algebra, calculus, differential equations, partial differential equations. 

Numerical analysis is similar in that prospect that the problems are solved but we 

only use simple arithmetic add, subtract, multiply, divide or compare only. Since 

these operations are exactly those that computers, so numerical analysis and 

computer are closely related  

Example: 

We need to find the cube root of 2 i.e.√2
3

 using only arithmetic operations. One 

way of solving this could be using trail and error method. We try choosing a value 

and multiply itself 3 times so that the value is close to 2. We take new 

approximation at get closer the number 2. 

1.23 = 1.728   too small 

1.43 = 2.744   too large 

1.253 = 1.9531   pretty close 

1.263 = 2.0004  really close 

Now we can say that the cube root of 2 lies between 1.2-1.26, and we can choose 

the value according to our need, how accurate we need. Here in above example 

we calculated the cube root of 2 just by using simple arithmetic and compare.  

Another difference between a numerical result and analytical result is that 

numerical result is always approximation. Analytical methods usually give the 



5 
 

result in terms of mathematical function that can evaluate for specific instances. 

This also has the advantage that the behavior and properties of the function are 

often apparent, this is not the case for numerical answer, however numerical 

results can be plotted to show some of the behavior of the solution.    

While the numerical results are an approximation this can usually be as accurate 

as needed. The necessary accuracy is of course determined by application and 

need. To achieve high accuracy many operations must be carried out, but as these 

operations are carried out the computer so that’s not a big problem. 

Solution by Taylor series 

Taylor series is often used in determining the order of errors for methods and the 

series itself is the basic for some numerical procedures. 

Let 𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0        

   (1) 

Be the differential equation to which the numerical solution is required. 

Expanding 𝑦(𝑥) about 𝑥 = 𝑥0 by Taylor Series we get 

y(x) = 𝑦(𝑥0) +
(𝑥−𝑥0)𝑦′(𝑥0)

1!
+

(𝑥−𝑥0)2𝑦′′(𝑥0)

2!
+ ⋯     

  (2) 

= 𝑦0 +
(𝑥−𝑥0)𝑦0

′

1!
+

(𝑥−𝑥0)2𝑦0
′′

2!
+ ⋯   (3) 

Putting𝑥 = 𝑥0 + ℎ = 𝑥1, h=difference we have 

𝑦1 = 𝑦(𝑥1) = 𝑦0 +
ℎ𝑦0

′

1!
+

ℎ2𝑦0
′′

2!
+

ℎ3𝑦0
′′′

3!
…  (4) 

Here 𝑦0
′ , 𝑦0

′′, 𝑦0
′′′ … can be found using equation (1) and its successive 

differentiation at 𝑥 = 𝑥0. The series in (4) can be truncated at any stage if ‘h’ is 

small. Now having obtained 𝑦1we can calculate 𝑦1
′ , 𝑦1

′′, 𝑦1
′′′ from equation (1) at 

𝑥 = 𝑥0 + h 

Now expanding 𝑦(𝑥) by Taylor series about 𝑥 = 𝑥1, we get 

𝑦2 = 𝑦1 +
ℎ𝑦1

′

1!
+

ℎ2𝑦1
′′

2!
+

ℎ3𝑦1
′′′

3!
…       (5) 
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Proceeding further we get 

𝑦𝑛 = 𝑦𝑛−1 +
ℎ𝑦𝑛−1

′

1!
+

ℎ2𝑦𝑛−2
′′

2!
+

ℎ3𝑦𝑛−3
′′′

3!
…  (6) 

 By taking sufficient number of terms in above series the value of 𝑦𝑛 can be 

obtained without much error 

If a Taylor series is truncated while there are still non-zero derivatives of higher 

order the truncated power series will not be exact. The error term for a truncated 

Taylor Series can be written in several ways but the most useful form when the 

series is truncated after 𝑛𝑡ℎ  term is  

Example: 

Using Taylor series method solve 
𝑑𝑦

𝑑𝑥
= 𝑥2 − 𝑦, 𝑦(0) = 1 at 𝑥 =

0.1,0.2,0.3 &0.4. Compare the values with exact solution. 

Solution 

Given 𝑦′ = 𝑥2 − 𝑦,𝑦(0) = 1, 

𝑥0 = 0, 𝑦0 = 1, h = 0.1, 𝑥 = 0.1, 𝑥 = 0.2, 𝑥 = 0.3, 𝑥 = 0.4 

Now  

𝑦′ = 𝑥2 − 𝑦  𝑦0
′ = 𝑥0

2 − 𝑦0 = 0 − 1 = −1 

𝑦′′ = 2𝑥 − 𝑦′  𝑦0
′′ = 2𝑥0 − 𝑦0

′ = 2 ∗ 0 − (−1) = 1 

𝑦′′′ = 2 − 𝑦′′  𝑦0
′′′ = 2 − 𝑦0

′′ = 1 

𝑦𝑖𝑣 = −𝑦′′′  𝑦0
𝑖𝑣 = −𝑦0

′′′ = −1 

By Taylor Series  

𝑦1 = 𝑦0 +
ℎ𝑦0

′

1!
+

ℎ2𝑦0
′′

2!
+

ℎ3𝑦0
′′′

3!
+

ℎ4𝑦0
𝑖𝑣

4!
… 

𝑦1 = 𝑦(0.1)  

= 1+
0.1(−1)

1!
+

(0.1)2∗1

2!
+

0.13∗1

3!
+

0.14∗(−1)

4!
… 

= 1−0.1 + 0.005 + 0.0001667 − 0.00000417 
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=0.90516 

Now 

𝑦1
′ = 𝑥1

2 − 𝑦1 = (0.1)2 − 0.90516=-0.89516 

𝑦1
′′ = 2𝑥1 − 𝑦1

′ = 2 ∗ (0.1) − (−0.89516) = 1.09516 

𝑦1
′′′ = 2 − 𝑦1

′′ = 2 − 1.0951 = 0.90484 

𝑦1
𝑖𝑣 = −𝑦1

′′′ = −0.90484 

By Taylor Series  

𝑦2 = 𝑦1 +
ℎ𝑦1

′

1!
+

ℎ2𝑦1
′′

2!
+

ℎ3𝑦1
′′′

3!
+

ℎ4𝑦1
𝑖𝑣

4!
… 

𝑦2 = 𝑦(0.2)  

= 0.90516+
0.1∗(−0.89516)

1!
+

(0.1)2∗1.09516

2!
+

0.13∗0.90484

3!
+

0.14∗(−)

4!
… 

= 0.9051 − 0.089516 + 0.0054758 + 0.000150 − 0.00000377 

=0.821266 

Now 

𝑦2
′ = 𝑥2

2 − 𝑦2 = (0.2)2 − 0.8212352 = −0.7812352 

𝑦2
′′ = 2𝑥2 − 𝑦2

′ = 2 ∗ (0.2) − (−0.7812352) = 1.1812352 

𝑦2
′′′ = 2 − 𝑦2

′′ = 2 − 1.1812352 = 0.8187648 

𝑦2
𝑖𝑣 = −𝑦2

′′′ = −0.8187648 

By Taylor Series  

𝑦3 = 𝑦2 +
ℎ𝑦2

′

1!
+

ℎ2𝑦2
′′

2!
+

ℎ3𝑦2
′′′

3!
+

ℎ4𝑦2
𝑖𝑣

4!
… 

𝑦3 = 𝑦(0.3)  

= 0.8212352 +
0.1 ∗ (−0.7812352)

1!
+

(0.1)2 ∗ 1.1812352

2!

+
0.13 ∗ 0.8187648

3!
+

0.14 ∗ (−0.8187648)

4!
… 
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= 0.7491509 

Now 

𝑦3
′ = 𝑥3

2 − 𝑦3 = (0.3)2 − 0.7491509 = −0.6591509 

𝑦3
′′ = 2𝑥3 − 𝑦3

′ = 2 ∗ (0.3) − (−0.6591509) = 1.2591509 

𝑦3
′′′ = 2 − 𝑦3

′′ = 2 − 1.2591509 = 0.740849 

𝑦3
𝑖𝑣 = −𝑦3

′′′ = −0.740849 

By Taylor Series  

𝑦4 = 𝑦3 +
ℎ𝑦3

′

1!
+

ℎ2𝑦3
′′

2!
+

ℎ3𝑦3
′′′

3!
+

ℎ4𝑦3
𝑖𝑣

4!
… 

𝑦4 = 𝑦(0.4)  

= 0.7491509 +
0.1 ∗ (−0.6591509)

1!
+

(0.1)2 ∗ 1.2591509

2!

+
0.13 ∗ 0.740849

3!
+ ⋯ 

= 0.6896519 

Similarly we can find the values of 𝑦𝑛 for n=5, 6, 7….. 

Approximation and errors in Numerical Computation: 
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Figure: 1.1 (Taxonomy of Errors) 

 

 

Modeling errors 

Mathematical models are the basis for numerical solution. They are formulated 

to represent physical process using certain parameters involved in the situations. 

In many situations it is impractical or impossible to include all of the real 

problems, so we use certain assumptions for easy calculations. For example while 

developing a model for calculating the for acting on a falling body, we may not 

be able to estimate the air resistance coefficient properly or determine the  

direction and magnitude of wind force acting on the body and so on. To simply 

the model we may assume that the force due to the air resistance is linearly 

proportional to the velocity of the falling body or we assume that there is no wind 

force acting on the body. All such assumption certainly results in errors in the 

output from such models.   

Inherent Errors 

Inherent errors are those that are present in the data supplied to the model. 

Inherent error contains data errors and conversion error. 

Data error 

Data error (known as empirical errors) arises when data for a problem are 

obtained by some experimental mean and are therefore of limited accuracy and 

precision. This may be due to some limitations in instruments and reading and 

therefore may be unavoidable, for example there is no use in performing 

arithmetic operations to 4 decimal places when the original data themselves are 

correct up to 2 decimal places. 

Conversion Error 

Conversion errors (representation error) arise due to the limitations of the 

computer to store data exactly. We know that the floating point representation 

retains only a specific number of digits, that are not retained constitute round off 

error. 
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Example  

0.110 = 0.00011001 

0.410 = 0.01100110 

Sum = 0.01111111 

0.510 = 0.25+0.125+0.0625+0.03125+0.015625+0.0078125+0.00390625 

 = 0.49609373 

 

Now from above example we can see that the addition of binary number 

conversion to decimal we do not get exact value as decimal number of 0.1 has 

non termination binary form 0.000110011001… and so on. The computer has 

fixed memory so it uses only certain number for digits after decimal so we get 

this type of errors which is caused by conversion.   

Numerical Errors 

Numerical errors (procedural errors) are introduced during the process of 

implementation of numerical methods. They come in two forms round off and 

truncation error. 

Round off errors 

Round off errors occurs when a fixed number of digits are used to represent exact 

number, since the number are stored at every stage of computation, round off 

error is introduced at the end of every arithmetic operations. Consequently even 

though an individual roundoff error could be very small the cumulative effect of 

a series of computation can be very significant. 

Rounding a number can be done in two way, chopping and symmetric rounding. 

Chopping 

In chopping the extra digits are dropped, this is also called truncating a number. 

Suppose we are using a computer with a fixed word length of four digits then a 

number like 42.7893will be stored as 42.78 and the digit 93 will be dropped. 

Symmetric round off 

In symmetric round off method, the last retained significant digit is “rounded off” 

by 1 if the first discarded digit is larger or equal to 5, otherwise the last retained 
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digit is unchanged. For example the number 42.7893 would become 42.79 and 

the number 76.5432 would become 76.54. 

Sometimes a slightly more refined rule is used when the last the last number is 5, 

then the number is unchanged if the last digit is even and is increased by 1 it is 

odd. 

Truncation error 

Truncation error arises from using an approximation in place of an exact 

mathematical procedure. Typically it is the error resulting from the truncation of 

the numerical process. We often use some finite number of terms to eliminate the 

sum of an infinite series, for example 

𝑠 = ∑ aix
i∞

𝑖=0
 is replaced by finite sum, the series is truncated as 

sin(x) = 𝑥 −
x3

3!
+

𝑥5

5!
−

𝑥7

7!
… 

Truncation error can be reduced by using a better numerical model which usually 

increases the number of arithmetic operations. E.g. in numerical integration the 

truncation error can be reduced by increasing the number of points at which the 

function is integrated, but care should be exercised to see that the round off error 

which is bound to increase due to increased arithmetic operations does not offset 

the reduction in truncation error. 

Blunders 

Blunders are errors that are caused due to human imperfection. As the name 

indicated such errors may cause a very serious disaster in the result since these 

errors are due to human mistake. It should be possible to avoid them to a large 

extent by acquiring a sound knowledge of all aspect of the problem as well as 

numerical process. 

Human errors can occur at any stage of the numerical processing cycle, some 

common types of errors are: 

1. Lack of understanding of the problem. 

2. Wrong assumption. 

3. Overlooking of some basic assumption required for formulating the model. 

4. Errors in deriving the mathematical equation or using model that does not 

describe adequately the physical system under study. 
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5. Selecting the wrong numerical method for solving the mathematical model. 

6. Selecting a wrong algorithm for implementing the numerical method. 

7. Making mistakes in the computer program, such as testing real number of 

zero, using <symbol in place of >. 

8. Mistakes in date input such as misprints, giving values column wise instead 

of row wise to a matrix. 

9. Wrong guessing of initial values.    

Absolute and Relative Errors: 

Some of the fundamental definition of errors analysis regardless of its source, an 

error is usually quantified in two different but related ways but are related in some 

ways, known as absolute error and relative error. 

Let us suppose that true value of a date item is denoted by 𝑥𝑡 and its approximated 

value is denoted by𝑥𝑎, then they are related as True value, (𝑥𝑡)=Approximate 

value(𝑥𝑎)+error. 

Error is given by error=𝑥𝑡-𝑥𝑎 

The error may be negative or positive depending on the values of 𝑥𝑡 and 𝑥𝑎. In 

error analysis what is important is magnitude of the error and not the sign and 

therefore we normally consider its absolute value, known as absolute error 

denoted by 

𝑒𝑟𝑟𝑜𝑟 = |𝑥𝑡 − 𝑥𝑎| 

In many case absolute error may not reflect its influence correctly as it does not 

take into account the order of magnitude of the value under study. For example 

an error of 1gm is much more significant in the weight of 10gm of gold than in 

weight of a bag of sugar of 1 kg. In view of this we introduce the concept of 

relative error which is nothing but the normalized value of absolute error. The 

relative error is defined as follows: 

𝑒𝑟 =
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟

|𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒|
 

=
|𝑥𝑡 − 𝑥𝑎|

|𝑥𝑡|
 

= |1 −
𝑥𝑎

𝑥𝑡
| 

mrdah
Highlight
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Minimizing the total error  

1. Increasing the significant figures of the computer.  

2. Minimizing the number of arithmetic operations. 

3. Avoiding subtractive cancellations 

4. Choosing proper initial parameters. 

Significant digits 

We all know that all computers operate with fixed length so that all the floating 

point representation requires the mantissa to be specified number of digits. Some 

numbers such as the value of 𝜋 = 3.141592….. we have to write as 3.14 or 

3.14159 in all these cases we have omitted some digits. Now 2
7⁄ =

0.285714 𝑜𝑟 𝜋 = 3.14159 is said to have number containing 6 significant digits.  

The concept of significant digit has been introduced primarily to indicate the 

accuracy if a numerical value. For example if the number y=23.40657 has correct 

value of only 23.406 then we may say that y has  5 significant digits and is correct 

up to 3 decimal places. The omission of certain digits from a number of results in 

roundoff error. The following statements describe the notion of significant digits. 

1. All non zero digits are significant. 

2. All zero occurring between non zero digit are significant digits. 

3. Trailing zero following a decimal point are significant .e.g. 3.50, 65.0& 

0.230 have three significant digits each. 

4. Zeros between the decimal point and preceding non-zero digit are not 

significant e.g. following numbers have 4 significant digits. 

0.0001234(1234𝑥10−7) 

0.001234(1234𝑥10−6) 

5. When the decimal point is not written trailing zeros are not considered to 

be significant. E.g. 4500 may be written as 45𝑥102 contains only two 

significant digits however. 

4500.0                  4  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑖𝑔𝑖𝑡𝑠 

7.56𝑥104              3  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑖𝑔𝑖𝑡𝑠 

7.560𝑥104            4  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑖𝑔𝑖𝑡𝑠 

7.5600𝑥104            5  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑑𝑖𝑔𝑖𝑡𝑠 
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The concept of accuracy and precision are closely related to significant digits. 

They are related as follows: 

1. Accuracy refers to the number of significant digits in a value e.g. 57.396 is 

accurate to five significant digits. 

2. Precision refers to the number of decimal position i.e. the order of 

magnitude if the last digit value. the number 57.396 has a precision of 

0.001 or 10−3  

 

    

Iterative methods 

There are number of iterative methods that have been tried and used successfully 

in various problem situations. All these methods typically generate a sequence of 

estimates of the solution which is expected to converge to the true solution. All 

iterative methods begin their process of solution with one or more guess of the 

solution and then using those guesses to find another better approximation and so 

on to get to required solution with desired accuracy. Iterative method can be 

grouped as: 

1. Bracketing methods 

2. Open end methods 

 

 

Before we start to go further into the methods first we need to know about the 

starting and stopping criteria in an iterative process. 

 

 

Starting criterion 

Before an iterative process is initiated, we have to determine an interval that 

contains the roots of the equation.  One method is to plot the curve and find the 

interval where the curve cuts the x-axis. Such that the interval that contains such 

point will contain roots. This gives us rough estimate of the roots, also helps to 

understand the properties of the function. 
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Stopping criterion 

An iterative process must be terminated at some stage; we must have a criterion 

for deciding when to stop the process. We may use one or combination of 

following tests depending in the behavior of the function to terminate the process: 

1. |𝑥𝑖+1 − 𝑥𝑖| ≤ 𝐸𝑎 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑥) 

2. |
𝑥𝑖+1−𝑥𝑖

𝑥𝑖+1
| ≤ 𝐸𝑟(𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑥)𝑥 ≠ 0 

3. |𝑓(𝑥𝑖+1)| ≤ 𝐸 (𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑜𝑜𝑡 ) 

4. |𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)| ≤ 𝐸 (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 ) 

 

𝑥𝑖 Represents the estimate of the root at 𝑖𝑡ℎ iteration and f (𝑥𝑖) is the value of the 

function at𝑥𝑖. There may be situations where these tests may fail when used alone 

so we use combination of many. 

 

Bracketing method 

This method starts with two initial guess that bracket the root and then 

systematically reduce the width of the bracket until the solution is reached. Two 

popular methods are: 

1. Bisection method 

2. False position method 

Bisection method 

The Bisection method is one of the simplest and most reliable method for solution 

of non-linear equations. This method relies on the fact that if 𝑓(𝑥) is real and 

continuous in the interval 𝑎 < 𝑥 < 𝑏 and 𝑓(𝑎)&𝑓(𝑏) have opposite signs i.e 

𝑓(𝑎) ∗ 𝑓(𝑏) < 0 then there is at least one real root in the interval between a & b. 

let 𝑥1 = 𝑎 𝑎𝑛𝑑 𝑥2 = 𝑏 . now determine another point  𝑥3 to be mid point between 

a and b i.e  𝑥3 =
𝑥1+𝑥2

2
 now there exists the following three conditions; 

1. 𝑓(𝑥3) = 0, 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑎 𝑟𝑜𝑜𝑡 𝑎𝑡 𝑥3 

2. 𝑖𝑓 𝑓(𝑥3) ∗ 𝑓(𝑥1) < 0, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑟𝑜𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑥1& 𝑥3 

3. 𝑖𝑓 𝑓(𝑥3) ∗ 𝑓(𝑥2) < 0, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑟𝑜𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  𝑥2& 𝑥3 
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Figure 1.2: Illustration of Bisection method 

 

Example 1: find a root of the equation 𝑥3 − 𝑥 − 11 = 0, correct up to 4 decimal 

place using bisection method. 

Solution:(𝑥) = 𝑥3 − 𝑥 − 11 = 0, now we select the initial approximation, by 

selecting those values of x where their functional values have opposite sign. 

S.N x f(x)   

1 1 -11   

2 2 -5   

3 3 13 

sign 

changed 

4 4 49   

5 5 109   

6 6 199   

7 7 325   

8 8 493   
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From above table we can that the values of f(x) changes at x=2 & x=3, we can 

randomly test for the values without creating the table but it will be easy to find 

out if we use table. 

Now the initial approximation be𝑥1 = 2,𝑥2 = 3 then 𝑓(2) = −5 &𝑓(3) =

13, where root lies in between 2 & 3, hence next approximation will be  𝑥3 =

𝑥1+𝑥2

2
 

e  𝑥3 =
2+3

2
= 2.5, 𝑓(2.5) = 2.125. since 𝑓(2)𝑓(2.5) < 0, a root lies in between 

2 & 2.5, now proceeding further in tabular form we get. 

Itr x1 f(x1) x2 f(x2) xm f(xm) error 

1 2.0000 -5.0000 3.0000 13.0000 2.5000 2.1250 1.0000 

2 2.0000 -5.0000 2.5000 2.1250 2.2500 -1.8594 0.5000 

3 2.2500 -1.8594 2.5000 2.1250 2.3750 0.0215 0.2500 

4 2.2500 -1.8594 2.3750 0.0215 2.3125 -0.9460 0.1250 

5 2.3125 -0.9460 2.3750 0.0215 2.3438 -0.4691 0.0625 

6 2.3438 -0.4691 2.3750 0.0215 2.3594 -0.2256 0.0313 

7 2.3594 -0.2256 2.3750 0.0215 2.3672 -0.1025 0.0156 

8 2.3672 -0.1025 2.3750 0.0215 2.3711 -0.0406 0.0078 

9 2.3711 -0.0406 2.3750 0.0215 2.3730 -0.0096 0.0039 

10 2.3730 -0.0096 2.3750 0.0215 2.3740 0.0059 0.0020 

11 2.3730 -0.0096 2.3740 0.0059 2.3735 -0.0018 0.0010 

12 2.3735 -0.0018 2.3740 0.0059 2.3738 0.0021 0.0005 

13 2.3735 -0.0018 2.3738 0.0021 2.3737 0.0001 0.0002 

14 2.3735 -0.0018 2.3737 0.0001 2.3736 -0.0009 0.0001 

15 2.3736 -0.0009 2.3737 0.0001 2.3736 -0.0004 0.0001 

16 2.3736 -0.0004 2.3737 0.0001 2.3736 -0.0001 0.0000 

 

Therefore, the root of the equation is 2.3737, since the value of error is 0.0000 or 

we can also say that the new root is same as old so this is the required roots for 

given stopping criteria. 

Example 2: Find the root of the equation of 𝑥2 − 4𝑥 − 10 = 0, correct upto 5 

decimal places. 
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Solution:𝑓(𝑥) = 𝑥2 − 4𝑥 − 10 = 0, let the initial approximation be -2& -1, 

chosen from table below . 

 

S.N x f(x) 

1 -3 11 

2 -2 2 

3 -1 -5 

4 0 -10 

5 1 -13 

6 2 -14 

7 3 -13 

now the initial approximation be 𝑥1 = −2, 𝑥2 = −1, then 𝑓(−2) = 2 &𝑓(−1) =

−5, where root lies in between 2 & 3, hence next approximation will be  𝑥3 =

𝑥1+𝑥2

2
 

e  𝑥3 =
−1−2

2
= −1.5, 𝑓(−1.5) = −1.7500, since 𝑓(−2)𝑓(−1.5) < 0, a root lies 

in between -2 &-1.5, now proceeding further in tabular form we get. 

Itr x1 f(x1) x2 f(x2) xm f(xm) error 

1 -2 2.0000 

-

1.0000 -5.0000 

-

1.5000 

-

1.7500 1.0000 

2 -2 2.0000 

-

1.5000 -1.7500 

-

1.7500 0.0625 0.5000 

3 -1.75 0.0625 

-

1.5000 -1.7500 

-

1.6250 

-

0.8594 0.2500 

4 -1.75 0.0625 

-

1.6250 -0.8594 

-

1.6875 

-

0.4023 0.1250 

5 -1.75 0.0625 

-

1.6875 -0.4023 

-

1.7188 

-

0.1709 0.0625 

6 -1.75 0.0625 

-

1.7188 -0.1709 

-

1.7344 

-

0.0544 0.0313 

7 -1.75 0.0625 

-

1.7344 -0.0544 

-

1.7422 0.0040 0.0156 

8 

-

1.74219 0.0040 

-

1.7344 -0.0544 

-

1.7383 

-

0.0253 0.0078 

9 

-

1.74219 0.0040 

-

1.7383 -0.0253 

-

1.7402 

-

0.0106 0.0039 



19 
 

10 

-

1.74219 0.0040 

-

1.7402 -0.0106 

-

1.7412 

-

0.0033 0.0020 

11 

-

1.74219 0.0040 

-

1.7412 -0.0033 

-

1.7417 0.0003 0.0010 

12 -1.7417 0.0003 

-

1.7412 -0.0033 

-

1.7415 

-

0.0015 0.0005 

13 -1.7417 0.0003 

-

1.7415 -0.0015 

-

1.7416 

-

0.0006 0.0002 

14 -1.7417 0.0003 

-

1.7416 -0.0006 

-

1.7416 

-

0.0001 0.0001 

15 -1.7417 0.0003 

-

1.7416 -0.0001 

-

1.7417 0.0001 0.0001 

16 

-

1.74167 0.0001 

-

1.7416 -0.0001 

-

1.7417 0.0000 0.0000 

 

Therefore, the root of the equation is -1.7417, since the value of error is 0.0000. 

Practice: find the roots of the equation for following equations, correct up to 

5 decimal places. 

1. 𝟑𝒙 + 𝐬𝐢𝐧 (𝒙) − 𝒆𝒙 = 𝟎 

2. 𝐬𝐢 𝐧(𝒙) − 𝟐𝒙 + 𝟏 = 𝟎 

3. 𝒆𝒙 − 𝒙 − 𝟐 = 𝟎 

4. 𝒙𝟑 − 𝒙 − 𝟑 = 𝟎 

5. 𝟒𝒙𝟑 − 𝟐𝒙 − 𝟔 = 𝟎 

 

NOTE: When there are trigonometric functions, use radian measure in calculator. 

False Position Method 

In Bisection method, the interval between 𝑥1&𝑥2 is divided into two equal halves, 

irrespective of the location of the root. It may be possible that the root is closer to 

one as in figure 1.3, note that the root is closer to 𝑥1.let us join the point 𝑥1&𝑥2 

by a straight line. The point of intersection of this line with x-axis gives and 

improved estimate root and is called false position of the root. Let this point is 

called 𝑥3. This point then replaces one of initial guess. The process is then 

repeated with new values of 𝑥1&𝑥2, since this method uses the false position of 
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the root repeatedly it is called false position method. It is also called linear 

interpolation method.  

 

 

 

 

  

 

 

 

 

Figure1.3 : Illustration of False position method  

The equation of the line joining (𝑥1, 𝑓(𝑥1))& (𝑥2, 𝑓(𝑥2)) is  

𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) 

𝑦 − 𝑦1 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
(𝑥 − 𝑥1) 

𝑦 − 𝑓(𝑥1) =
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
(𝑥 − 𝑥1) 

Let the line joining the points (𝑥1, 𝑓(𝑥1))& (𝑥2, 𝑓(𝑥2)) cuts x-axis at (𝑥3, 0), then 

the point lies in the line, putting the value in the equation we get 

0 − 𝑓(𝑥1) =
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
(𝑥3 − 𝑥1) 

On solving the above equation, we get, 

𝑥3 = 𝑥1 −
𝑓(𝑥1)(𝑥2 − 𝑥1)

𝑓(𝑥2) − 𝑓(𝑥1)
 

This is the formula for calculating the new approximation in false position 

method. 

X2, f(x2) 

X3, f(x3) 

X1, f(x1) 

X1 

X3 X2 

F(x) 

X 
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Example 1: find the real root of the equation 𝑥3 − 2𝑥 − 5 = 0 by the method of 

false position correct up to 4 decimal places. 

Solution: Let 𝑓(𝑥) = 𝑥3 − 2𝑥 − 5 = 0, Now we select the initial approximation, 

by selecting those values of x where their functional values have opposite sign. 

S.N x f(x)   

1 1 -6   

2 2 -1   

3 3 16 

Sign 

changed 

4 4 51   

5 5 110   

6 6 199   

7 7 324   

8 8 491   

From above table we can that the values of f(x) changes at x=2 & x=3, we can 

randomly test for the values without creating the table but it will be easy to find 

out if we use table. 

now the initial approximation be 𝑥1 = 2, 𝑥2 = 3, then 𝑓(2) = −1 &𝑓(3) =

16, where root lies in between 2 & 3, hence next approximation will be 

 

𝑥3 = 𝑥1 −
𝑓(𝑥1)(𝑥2 − 𝑥1)

𝑓(𝑥2) − 𝑓(𝑥1)
 

𝑥3 = 2 −
(−1)(3 − 2)

(16 − (−1))
 

𝑥3 = 2.0588 

𝑓(2.0588) = −0.3908. since 𝑓(2.0588) ∗ 𝑓(3) < 0, a root lies in between 

2.0588&3 now proceeding further in tabular form we get. 

Itr x1 f(x1) x2 f(x2) x3 f(x3) error 

1 2.0000 -1.0000 3.0000 16.0000 2.0588 -0.3908 1.0000 

2 2.0588 -0.3908 3.0000 16.0000 2.0813 -0.1472 0.9412 

3 2.0813 -0.1472 3.0000 16.0000 2.0896 -0.0547 0.9187 
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4 2.0896 -0.0547 3.0000 16.0000 2.0927 -0.0202 0.9104 

5 2.0927 -0.0202 3.0000 16.0000 2.0939 -0.0075 0.9073 

6 2.0939 -0.0075 3.0000 16.0000 2.0943 -0.0027 0.9061 

7 2.0943 -0.0027 3.0000 16.0000 2.0945 -0.0010 0.9057 

8 2.0945 -0.0010 3.0000 16.0000 2.0945 -0.0004 0.9055 

9 2.0945 -0.0004 3.0000 16.0000 2.0945 -0.0001 0.9055 

10 2.0945 -0.0001 3.0000 16.0000 2.0945 -0.0001 0.9055 

11 2.0945 -0.0001 3.0000 16.0000 2.0945 0.0000 0.9055 

12 2.0945 0.0000 3.0000 16.0000 2.0946 0.0000 0.9055 

 

Therefore, the root of the equation is 2.0946, since the value of f(x3) = 0.0000. 

Example 2: find the real root of the equation 𝑥2 − 4𝑥 − 10 = 0 by the method of 

false position correct up to 6 decimal places. 

Solution 

Let 𝑓(𝑥) = 𝑥2 − 4𝑥 − 10 = 0, Now we select the initial approximation, by 

selecting those values of x where their functional values have opposite sign. 

S.N x f(x) 

1 -3 11 

2 -2 2 

3 -1 -5 

4 0 -10 

5 1 -13 

6 2 -14 

7 3 -13 

 

From above table we can that the values of f(x) changes at x=-2 & x=-1, we can 

randomly test for the values without creating the table but it will be easy to find 

out if we use table. 

now the initial approximation be 𝑥1 = −2, 𝑥2 = −1, then 𝑓(−2) = 2 &𝑓(−1) =

−5, where root lies in between -2 &-1, hence next approximation will be 

 

𝑥3 = 𝑥1 −
𝑓(𝑥1)(𝑥2 − 𝑥1)

𝑓(𝑥2) − 𝑓(𝑥1)
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𝑥3 = −2 −
(2)(−1 − (−2))

(−5 − 2)
 

     𝑥3 = −1.714286 

𝑓(−1.714286) = −0.204082. since 𝑓(2) ∗ 𝑓(−1.714286) < 0, a root lies in 

between 2 &−1.714286 now proceeding further in tabular form we get. 

Itr x1 f(x1) x2 f(x2) x3 f(x3) error 

1 

-

2.000000 2.000000 

-

1.000000 

-

5.000000 

-

1.714286 

-

0.204082 1.000000 

2 

-

2.000000 2.000000 

-

1.714286 

-

0.204082 

-

1.740741 

-

0.006859 0.285714 

3 

-

2.000000 2.000000 

-

1.740741 

-

0.006859 

-

1.741627 

-

0.000229 0.259259 

4 

-

2.000000 2.000000 

-

1.741627 

-

0.000229 

-

1.741656 

-

0.000008 0.258373 

5 

-

2.000000 2.000000 

-

1.741656 

-

0.000008 

-

1.741657 0.000000 0.258344 

 

Therefore, the root of the equation is -1.741657, since the value of f(x3) = 

0.000000. 

 

Practice: Find the real roots  for the following equations , correct up to 5 

decimal places. 

1. 𝟑𝒙 + 𝐬𝐢𝐧 (𝒙) − 𝒆𝒙 = 𝟎 

2. 𝒙 − 𝒆−𝒙 = 𝟎 

3. 𝒙𝟑 − 𝟒𝒙𝟐 + 𝒙 + 𝟔 = 𝟎 

4. 𝟑𝒙𝟐 + 𝟔𝒙 − 𝟒𝟓 = 𝟎 

5. 𝟒𝒙𝟑 − 𝟐𝒙 − 𝟔 = 𝟎 
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Open end methods: 

This method uses single starting value or two values that do not necessarily 

bracket the root. The following methods fall under open end method: 

1. Secant method 

2. Newton method 

3. Fixed point method 

 

Secant Method 

The secant method begins by finding two points on the curve of f(x), hopefully 

near to root. We draw a line through these two points and find the point where it 

intersects the x -axis. The two points may both be on one side of the root as seen 

in figure, but they can also be on opposite side. 

If f(x) were truly linear, the straight line would intersect x-axis at the roots, but 

f(x) will never be linear because we would never use a root finding method on a 

linear function. That means the intersection of the line with x-axis in not at root, 

but that should be close to it. From the obvious similar triangles we can write  

 

 

 

 

 

 

 

 

Figure 1.4: Illustration of Secant method 

(𝑥2 − 𝑥3)

𝑓(𝑥2)
=

(𝑥1 − 𝑥2)

(𝑓(𝑥1) − 𝑓(𝑥2))
 

Now solving this for 𝑥3 we get  

X3 X2 X1 

F(X2) 

F(X1) 
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𝑥3 = 𝑥2 −
𝑓(𝑥2)(𝑥1 − 𝑥2)

𝑓(𝑥1) − 𝑓(𝑥2)
 

Because f(x) is not exactly linear, 𝑥3 is not equal to root, but it should be closer 

than either of the two points.  

Example 1: Find the real root of the equation 𝑥2 − 4𝑥 − 10 = 0 by the method 

of secant method correct up to 6 decimal places. 

Solution 

Let 𝑓(𝑥) = 𝑥2 − 4𝑥 − 10 = 0, let the initial approximation be 𝑥1 = 4, 𝑥2 = 6, 

hence next approximation will be 

 

𝑥3 = 𝑥2 −
𝑓(𝑥2)(𝑥1 − 𝑥2)

𝑓(𝑥1) − 𝑓(𝑥2)
 

𝑥3 = 6 −
(2)(4 − 6)

(−10 − 2)
 

      

𝑥3 = 5.666667 

Proceeding further in tabular form we get. 

Itr. x1 f(x1) x2 f(x2) x3 f(x3) error 

1 4.000000 

-

10.000000 6.000000 2.000000 5.666667 

-

0.555556 2.000000 

2 6.000000 2.000000 5.666667 

-

0.555556 5.739130 

-

0.018904 0.333333 

3 5.666667 -0.555556 5.739130 

-

0.018904 5.741683 0.000191 0.072464 

4 5.739130 -0.018904 5.741683 0.000191 5.741657 0.000000 0.002553 

5 5.741683 0.000191 5.741657 0.000000 5.741657 0.000000 0.000026 

Therefore, the root of the equation is 5.741657, since the value of f(x3) = 

0.000000. 

Practice: Find the real roots following equations, correct up to 5 decimal 

places. 

1. 𝟑𝒙 + 𝐬𝐢𝐧 (𝒙) − 𝒆𝒙 = 𝟎 
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2. 𝟒𝒙𝟑 − 𝟐𝒙 − 𝟔 = 𝟎 

3. 𝒙𝟐 − 𝟓𝒙 + 𝟔 = 𝟎 

4. 𝒙 𝐬𝐢𝐧 𝒙 − 𝟏 = 𝟎 

5. 𝒆𝒙 − 𝟑𝒙 = 𝟎 

Newton’s method 

One of the most widely used methods of solving non-linear equations is Newton’s 

method (also called Newton Raphson Method). This method is also based on the 

linear approximation of the function, but does so using a tangent line to the curve. 

Figure gives the graphical description starting from a single initial estimate 𝑥0, 

that is not too far from a root. We move along the tangent to its intersection with 

x-axis and take the next approximation. This is continued until either the 

successive x-value are sufficiently close or the value of the function is sufficiently 

near to zero. 

The calculation scheme follows immediately from the right triangle shown in 

figure, which has the angle of inclination of the tangent line to the curve at𝑥 = 𝑥0. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Illustration of Newton’s Method 

 

ᶿ 
X1 X1 
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tan 𝜃 = 𝑓′(𝑥0) =
𝑓(𝑥0)

𝑥0 − 𝑥1
 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
 

In general,  

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2,3…. 

Newton’s method is widely used because it is more rapidly convergent then any 

of the methods. Some important things that should be kept in mind while using 

Newton method: 

1. When 𝑓′(𝑥0) is very large, i.e. when the slope is large the root can be 

calculated in even less time. 

2. If we choose the initial approximation𝑥0 close to the root then we get the 

root of the equation very quickly. 

3. The process will evidently fail if   𝑓′(𝑥) = 0, in that case use other methods 

4. If the initial approximation to the root is not given choose two values of x 

such that its functional values are opposite, as this will ensure that the 

chosen point in near the root. 

 

Example 1: Find the root of  𝑥3 − 3𝑥2 + 2𝑥 − 10 = 0, using NR method 

Solution: Let 𝑥0 = 2 be an approximate of the root, then  

𝑓(𝑥) = 𝑥3 − 3𝑥2 + 2𝑥 − 10 

𝑓′(𝑥) = 3𝑥2 − 6𝑥 + 2 

At 𝑥0 = 2 

𝑓(2) = 23 − 322 + 2 ∗ 2 − 10 = −10 

𝑓′(2) = 322 − 6 ∗ 2 + 2 = 2 

  

Then the new approximate is : 

 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
 

𝑥1 = 2 −
−10

2
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= 7 

Now  

𝑥0 = 𝑥1 = 7 

Then doing further calculation, we get required root of the equation. In tabular 

form we get 

Itr x0 f(x0) f'(x0) x1 error 

1 2.00000 -10.00000 2.00000 7.00000 5.00000 

2 7.00000 200.00000 107.00000 7.00000 5.00000 

3 5.13084 56.35721 50.19155 5.13084 1.86916 

4 4.00800 14.20854 26.14417 4.00800 1.12284 

5 3.46453 2.50479 17.22172 3.46453 0.54347 

6 3.31909 0.15333 15.13448 3.31909 0.14544 

7 3.30895 0.00071 14.99382 3.30895 0.01013 

8 3.30891 0.00000 14.99316 3.30891 0.00005 

Therefore, the root of the equation is 3.30891, since the value error=0.00005 

correct up to 4 decimal place. 

Practice : 

1. 𝐬𝐢𝐧(𝒙) = 𝟏 + 𝒙𝟑 

2. 𝒇(𝒙) = 𝒙𝟐 − 𝟐𝒙 − 𝟏 

3. 𝒇(𝒙) = 𝒙𝟑 − 𝒙 − 𝟑 

4. 𝒇(𝒙) = 𝒙𝟑 − 𝟑𝒙 − 𝟐 

5. 𝒇(𝒙) = 𝐜𝐨𝐬 𝒙 

Fixed point Iteration method 

Any function in the form of 𝑓(𝑥) = 0 can be manipulated such that x is on the 

left hand side of the equation as shown∶ 𝑥 = 𝑔(𝑥). Both equations are equivalent. 

Observe that if 𝑓(𝑟) = 0, where r is the root of f(x), it follows that r= 𝑔(𝑟), 

whenever we have r= 𝑔(𝑟)r is said to be fixed point for the function g. 

If 𝑥𝑖 is an approximate solution then 𝑥𝑖+1 = 𝑔(𝑥𝑖). The above transformation can 

be obtained either by algebraic manipulation of the given equation or by simply 

adding x to both sides of equation. 

Example 1: locate the root of the equation 𝑓(𝑥) = 𝑥2 − 2𝑥 − 3. 
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Suppose we arrange to given the equivalent form 𝑥 = 𝑔1(𝑥) = √2𝑥 + 3, if we 

start with x=4 and iterate. Successive values of x are 

𝑥0 = 4 

𝑥1 = √11 = 3.31662 

𝑥2 = 3.10375 

𝑥3 = 3.03439 

𝑥4 = 3.01144 

𝑥5 = 3.00381 

𝑥6 = 3.00127 

Therefore, it appears that the values are converging on the root at 𝑥 = 3 

Now if we re-arrange the terms then we get another equation 

𝑔2(𝑥) =
3

(𝑥 − 2)
= 𝑥 

Let us start the integration again with 𝑥0 = 4, successive values then 

𝑥0 = 4 

𝑥1 = 1.5 

𝑥2 = −6 

𝑥3 = −0.375 

𝑥4 = −1.26316 

𝑥5 = −0.91935 

𝑥6 = −1.02763 

𝑥7 = −0.99087 

𝑥8 = −1.00305 

𝑥9 = −0.99898 

𝑥10 = −1.00034 
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𝑥11 = −0.99989 

𝑥12 = −1.0004 

𝑥13 = −1.00000 

It seems that we now converge to another root at 𝑥 = −1, we also see that the 

converge is oscillatory rather than monotonic. 

 

Consider another re-arrangement 

𝑥 = 𝑔2(𝑥) =
𝑥2 − 3

2
 

Starting with 

𝑥0 = 4 

𝑥1 = 6.5 

𝑥2 = 19.625 

𝑥3 = 191.070 

From these results we see that the iterates are diverging. 

NOTE: the g(x) formed must be such that |𝑔′(𝑥)| around the real root should be 

less than 1, if this is not case change g(x). 

Practice 

Use the Fixed point iteration method to evaluate a root of the equation 𝒙𝟐 −

𝒙 − 𝟏 = 𝟎, using the following forma of g(x) 

a. 𝒙 = 𝒙𝟐 − 𝟏 

b. 𝒙 = 𝟏 + 𝟐𝒙 − 𝒙𝟐 

c. 𝒙 =
𝟏+𝟑𝒙−𝒙𝟐

𝟐
 

Starting with 𝒙𝟎 = 𝟏 𝒂𝒏𝒅 𝒙𝟎 = 𝟐  and discuss the results 
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Convergence: 

Convergence of Bisection method 

In the bisection method, we choose a midpoint 𝑥3 in the interval between 𝑥1&𝑥3. 

Depending on the sign of the function 𝑓(𝑥0), 𝑓(𝑥1) &𝑓(𝑥2). 𝑥1&𝑥2 is set to equal 

to 𝑥0, such that the new interval contains the root. In either case the interval 

containing the root is reduced by a factor 2. The same procedure is repeated n 

times, then the interval containing the root is reduced to the size 
𝑥2−𝑥1

2𝑛
=

∆𝑥

2𝑛
 

After n iterations the root must lie within ±
∆𝑥

2𝑛
 of our estimate. This means that 

error bounds at 𝑛𝑡ℎ iteration is 𝐸𝑛 = |
∆𝑥

2𝑛
| 

Similarly𝐸𝑛+1 = |
∆𝑥

2𝑛+1
| = |

∆𝑥

2𝑛.2
| =

𝐸𝑛

2
 

that is the error decreases linearly with each step by a factor of 0.5. the bisection 

method is therefore linearly convergent. Since the convergence is slow to achieve 

a high degree of accuracy. Large number of iterations may be needed; however 

the bisection algorithm is guaranteed to converge. 

Convergence of secant method and false position 

Both of the secant method and false position uses iterations that can be written as 

𝑥𝑛+1 =
𝑓(𝑥𝑛)(𝑥𝑛 − 𝑥𝑛−1)

𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)
 

Which is similar to𝑥 = 𝑔(𝑥), except 𝑥 = 𝑔(𝑥𝑛, 𝑥𝑛−1) when we apply Taylor 

series the derivatives are pretty complicated, so we omit the details it turns out 

that the error relation is  

𝑒𝑛+1 =
𝑔(𝜉1, 𝜉2)

2
∗ 𝑒𝑛𝑒𝑛+1 

Showing that the error is proportional to the product of the two pervious errors, 

we can conclude that the convergence is better than linear but poorer than 

quadratic 

𝑒𝑛+1 ∝  𝑒𝑛 ∗ 𝑒𝑛−1 

Convergence of Fixed point iteration: 

The demonstration in example earlier shows that fixed point iterations seems to 

converge linearly. We now show when this is true. 
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We have 𝑥𝑛+1 = 𝑔(𝑥𝑛) now writing above relation for the error after iteration 

n+1, where R is the true value of the root. 

𝑅 − 𝑥𝑛+1 = 𝑅 − 𝑔(𝑥𝑛) = 𝑔(𝑅) − 𝑔(𝑥𝑛) 

Because where 𝑥 = 𝑅, 𝑅 = 𝑔(𝑅), multiplying and dividing by (R-𝑥𝑛), we get 

𝑅 − 𝑥𝑛+1 =
(𝑔(𝑅)−𝑔(𝑥𝑛))

(𝑅−𝑥𝑛)
(R-𝑥𝑛) 

Now we can use the mean value theorem, if 𝑔(𝑥) and 𝑔′(𝑥) are continuous, to 

say that  

𝑅 − 𝑥𝑛+1 = 𝑔′(𝜉𝑛) ∗ (𝑅 − 𝑥𝑛) where 𝜉𝑛 lies between 𝑥𝑛 𝑎𝑛𝑑 𝑅, writing 𝑒𝑛 for 

the error of the 𝑛𝑡ℎ iterate, we have |𝑒𝑛+1| = |𝑔′(𝜉𝑛) ∗ 𝑒𝑛| 

Because 𝑒𝑛 the error in 𝑥𝑛 is 𝑅 − 𝑥𝑛(we take absolute values because the 

successive iterates may oscillate around the root). Now from above equation we 

can say that the fixed point iteration will converge linearly, in the limit as 𝑥𝑛 

approaches R, provided that we start within the interval |𝑔′(𝜉𝑛)| < 𝐾 < 1 

Convergence of Newton’s method 

Newton’s method uses iteration that resembles fixed point  

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
= 𝑔(𝑥𝑛) , successively iterates will converge if |𝑔′(𝑥)| < 1 

and doing the differentiation, we see that the method converge, if  

|𝑔′(𝑥)| = |
𝑓(𝑥) ∗ 𝑓′′(𝑥)

(𝑓′(𝑥))2
| < 1………………1 

Which requires that f(x) and its derivatives exits and be continuous. Newton 

method is shown to be quadratically convergent by the following as before 

𝑅 − 𝑥𝑛+1 = 𝑔(𝑅) − 𝑔(𝑥𝑛) 

Now we expand 𝑔(𝑥𝑛) as Taylor series in terms of (𝑅 − 𝑥𝑛) with the second 

derivative term as the remainder getting 

𝑔(𝑥𝑛) = 𝑔(𝑅) + 𝑔′(𝑅) ∗ (𝑅 − 𝑥𝑛) + (
𝑔′′(𝜉)

2
) ∗ (𝑅 − 𝑥𝑛)2 ………… .2 

Where 𝜉 lies within (𝑥𝑛, 𝑅), however from equation 1 
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|𝑔′(𝑅)| = |
𝑓(𝑅) ∗ 𝑓′′(𝑅)

(𝑓′(𝑅))2
| = 0 

Because 𝑓(𝑅) = 0 at the root and equation 2 reduces to  

𝑔(𝑥𝑛) = 𝑔(𝑅) + (
𝑔′(𝜉)

2
) ∗ (𝑅 − 𝑥𝑛)2 ………… . .3 

Using 𝑒𝑛 = 𝑅 − 𝑥𝑛 for the error on the 𝑛𝑡ℎ iterate equation 3 becomes 

𝑒𝑛+1 = 𝑅 − 𝑥𝑛+1 = 𝑔(𝑅) − 𝑔(𝑥𝑛) = −(𝑔′′(𝜉)/2)(𝑒𝑛
2) 

Providing that Newtons method is quadratically convergent  

𝑒𝑛+1 ∝ 𝑒𝑛
2 

 

Chapter 2: Interpolation and approximation 

The statement 𝑦 = 𝑓(𝑥), 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛 means for every corresponding value of x 

in the range 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛, there exists one or more values of y. assuming that 

𝑓(𝑥) is single valued and continuous and that it is known explicitly then the 

values of 𝑓(𝑥) corresponding to certain given values of x, say 𝑥0, 𝑥1,𝑥2 … . . 𝑥𝑛 

can easily be computed and tabulated. The central problem of numerical analysis 

is the converse one,given the set of tabular values of 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2)…… (𝑥𝑛, 𝑦𝑛) satisfying the relation 𝑦 = 𝑓(𝑥) where the 

explicit nature of f(x) is not known, it is required to find a simpler function say 

𝜙(𝑥) such that 𝑓(𝑥)𝑎𝑛𝑑 𝜙(𝑥)agree at the set of tabulated points. Such a process 

is called interpolation. If 𝜙(𝑥) is polynomial then the process is called polynomial 

interpolation and 𝜙(𝑥) is called interpolating polynomial. Similarly different 

types of interpolation arise depending on 𝜙(𝑥). 

An application of interpolation can be seen everyday in weather forcasting. The 

weather service people collect information on temperatures, wind  speed and 

direction, humidity, pressure from hundreds of weather stations around the world. 

All these data items are entered into a massive computer program that models the 

weather. 

Interpolation 

𝑒𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + ⋯…… .+𝑎𝑛𝑥𝑛 
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Taylor series expansion of 𝑒𝑥 about x=0, 𝑎0, 𝑎1, 𝑎2 … ..are coefficient to be 

determined  

𝑥 0 0.5 1 1.5 2 2.5 3 

𝑒𝑥 1 1.8487 2.7183 4.4817 7.3891 12.1825 20.085 

 

If we have to find the value of 𝑒2.2 𝑜𝑟 𝑒0.75 then interpolation inside the given 

range. 

If we have to find the value of 𝑒3.2 then extrapolation outside the given range. 

 

Various method of interpolation  

1. Lagrange interpolation 

2. Newton’s interpolation  

3. Newton’s Gregory forward interpolation 

4. Spline interpolation 

Polynomial form  

The most common form of an nth order polynomial is  

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + ⋯…… .+𝑎𝑛𝑥𝑛  known as power form. 

Linear interpolation 

The simplest form of interpolation is to approximate two data points by straight 

line, suppose we have two points (𝑥1𝑓(𝑥1)) &(𝑥2𝑓(𝑥2)). These two points can 

be connected linearly as shown in figure, using the concept of similar triangles 

we show that : 

𝑓(𝑥) − 𝑓(𝑥1)

𝑥 − 𝑥1
=

𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
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Figure: Graphical representation of Linear interpolation 

On solving for f(x) we get 

𝑓(𝑥) = 𝑓(𝑥1) + (𝑥 − 𝑥1)
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
 

Above equation is known as linear interpolation formula, note that 
𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
 

represents the slope of line. 

 

Example : The table below shows square root for the integers, determine the 

square root of 2.5 

x 1 2 3 4 5 

F(x) 1 1.4142 1.7321 2 2.2361 

 

The given value of 2.5 lies in between 2 and 3. Therefore 𝑥1 = 2, 𝑓(𝑥1) =

1.4142, 𝑥2 = 3, 𝑓(𝑥2) = 1.7321,  

𝑓(2.5) = 𝑓(𝑥1) + (𝑥 − 𝑥1)
𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
 

             = 𝑓(2) + (2.5 − 2)
𝑓(3) − 𝑓(2)

3 − 2
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= 1.4142 + (2.5 − 2)
1.7321 − 1.4142

3 − 2
 

= 1.5732 

Now if the two points taken are 𝑥1 = 2, 𝑥2 = 4 

𝑓(2.5) = 𝑓(1) + (2.5 − 2)
𝑓(4) − 𝑓(2)

4 − 2
 

𝑓(2.5) = 1.4142 + 0.5
(2 − 1.4142)

2
 

                                               =1.5607 

The correct answer is 1.5811, so from above values we can say that closer the 

points the more accurate results. 

 

Lagrange Interpolation polynomial 

Let (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) are given set of data points.Let 𝑦 = 𝑓(𝑥) 

be a function which takes the (n+1) values 𝑦0, 𝑦1, 𝑦2, ……𝑦𝑛 corresponding to 

𝑥 = 𝑥0, 𝑥1, 𝑥2 ……𝑥𝑛. Now 𝑓(𝑥) can be represented as polynomial of 𝑛𝑡ℎ  degree 

in x.  

Let the polynomial be of the form 

𝑦 = 𝑓(𝑥) = 𝑎0(𝑥 − 𝑥1)(𝑥 − 𝑥2)…… (𝑥 − 𝑥𝑛) 

+𝑎1(𝑥 − 𝑥0)(𝑥 − 𝑥2)…… (𝑥 − 𝑥𝑛) 

+𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1)…… (𝑥 − 𝑥𝑛)……. 

+𝑎𝑛(𝑥 − 𝑥0)(𝑥 − 𝑥1)…… (𝑥 − 𝑥𝑛−1)…… . . (1) 

Putting 𝑥 = 𝑥0, 𝑦 = 𝑦0 in the equation 1 we get, 

𝑦0 = 𝑎0(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)…… (𝑥0 − 𝑥𝑛) 

𝑎0 =
𝑦0

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)…… (𝑥0 − 𝑥𝑛)
 

 

Again putting 𝑥 = 𝑥1, 𝑦 = 𝑦1 in the equation 1 we get, 
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𝑦1 = 𝑎1(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)…… (𝑥1 − 𝑥𝑛) 

𝑎1 =
𝑦1

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)…… (𝑥1 − 𝑥𝑛)
 

On preceding  

𝑎𝑛 =
𝑦𝑛

(𝑥𝑛 − 𝑥0)(𝑥𝑛 − 𝑥1)…… (𝑥𝑛 − 𝑥𝑛−1)
 

Substituting the values of 𝑎0, 𝑎1,𝑎2 ……𝑎𝑛 in equation 1 we get. 

𝑦 = 𝑓(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)…… (𝑥 − 𝑥𝑛)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)…… (𝑥0 − 𝑥𝑛)
𝑦0 

+
(𝑥 − 𝑥0)(𝑥 − 𝑥2)…… (𝑥 − 𝑥𝑛)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)…… (𝑥1 − 𝑥𝑛)
𝑦1 

+ ……. 

(𝑥 − 𝑥0)(𝑥 − 𝑥1)…… (𝑥 − 𝑥𝑛−1)

(𝑥𝑛 − 𝑥0)(𝑥𝑛 − 𝑥1)…… (𝑥𝑛 − 𝑥𝑛−1)
𝑦𝑛 

this is known as Lagrange’s interpolation formula  

in general  

𝑓(𝑥) = ∑

𝑦𝑗 ∏ (𝑥 − 𝑥𝑖)
𝑛
𝑖=0
𝑖≠𝑗

∏ (𝑥𝑗 − 𝑥𝑖)
𝑛
𝑖=0
𝑖≠𝑗

𝑛

𝑗=0

 

This is Lagrange basic polynomial  

Note: 

1. This formula can be used irrespective of whether the values 𝑥0,𝑥1,𝑥2,….𝑥𝑛, 

are equally spaced or not. 

2. It is simple and easy to remember but its application is not speedy. 

3. The main drawback of it is that if another interpolation value is inserted, 

then the interpolation coefficients are required to be recalculated. 

Example 1: Consider the problem to find the square root of 2.5 using the 

second order Lagrange interpolation polynomial. 
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Consider the following three points  

x0 = 2 x1 = 3 x2 = 4 

f0 = 1.4142 f1 = 1.7321 f2 = 2 

 

We know that 

𝑓(𝑥) = ∑𝑦𝑖𝑙𝑖

2

𝑖=0

 

Where  

𝑙𝑖 =

∏ (𝑥 − 𝑥𝑗)
2
𝑗=0
𝑗≠𝑖

∏ (𝑥𝑖 − 𝑥𝑗)
2
𝑗=0
𝑗≠𝑖

 

 

so 

𝑙0(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
 

                                                    = 
(𝑥−3)(𝑥−4)

(2−3)(2−4)
 

=
𝑥2 − 7𝑥 + 12

2
 

 

𝑙1(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
 

                                                    = 
(𝑥−2)(𝑥−4)

(3−2)(3−4)
 

=
𝑥2 − 6𝑥 + 8

−1
 

𝑙2(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

                                                     = 
(𝑥−2)(𝑥−3)

(4−2)(4−3)
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=
𝑥2 − 5𝑥 + 6

2
 

We know, 𝑓(𝑥) = 𝑦0𝑙0(𝑥) + 𝑦1𝑙1(𝑥) + 𝑦2𝑙2(𝑥) 

= 1.4142 ∗
𝑥2 − 7𝑥 + 12

2
+ 1.7321 ∗

𝑥2 − 6𝑥 + 8

−1
+ 2 ∗

𝑥2 − 5𝑥 + 6

2
 

= 0.7071 ∗ (𝑥2 − 7𝑥 + 12) − 1.7321 ∗ (𝑥2 − 6𝑥 + 8) + (𝑥2 − 5𝑥 + 6) 

𝑓(2.5) = 0.7071 ∗ (2.52 − 7 ∗ 2.5 + 12) − 1.7321 ∗ (2.52 − 6 ∗ 2.5 + 8)

+ (2.52 − 5 ∗ 2.5 + 6) 

= 0.5303 + 1.2991 − 0.25 

= 1.5794 

The square root of 2.5 is 1.5794 with some error. 

Practice : 

1. Find the Lagrange interpolation polynomial to fit the following data. 

𝑖 0 1 2 3 

𝑥𝑖 0 1 2 3 

𝑒𝑥𝑖 − 1 0 1.7183 6.3891 19.0855 

Use the polynomial to estimate the value of 𝑒1.5 

 

2. Find the Lagrange interpolation polynomial to fit the following data. 

𝑥 1.0 1.1 1.2 

cos 𝑥 0.5403 0.4536 0.3624 

Use the polynomial to estimate the value of cos 1.15 

 

Newtons Interpolation formula 

Given the set of data points (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2)…… (𝑥𝑛−1, 𝑦𝑛−1). Let us 

consider a polynomial function of the form known as newton form as  

𝑝𝑛(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1)

+ 𝑎3(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2) + ⋯+ 𝑎𝑛(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛−1) 

Of the order n which passes through all the given data points 

At 𝑥 = 𝑥0 , 𝑝𝑛(𝑥0) = 𝑎0 = 𝑦0 
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𝐴𝑡 , 𝑥 = 𝑥1 , 𝑝𝑛(𝑥1) = 𝑎0 + 𝑎1(𝑥1 − 𝑥0) = 𝑦1 

𝑎1 =
𝑦1 − 𝑎0

𝑥1 − 𝑥0
 

=
𝑦1 − 𝑦0

𝑥1 − 𝑥0
 

 

𝐴𝑡 , 𝑥 = 𝑥2 , 𝑝𝑛(𝑥2) = 𝑎0 + 𝑎1(𝑥2 − 𝑥0) + 𝑎2(𝑥2 − 𝑥0)(𝑥2 − 𝑥1) = 𝑦2 

𝑎2 =
𝑦2 − 𝑦0 − 𝑎1(𝑥2 − 𝑥0)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

Substituting of the value of 𝑎1 

𝑎2 =
𝑦2 − 𝑦0 −

𝑦1−𝑦0

𝑥1−𝑥0
(𝑥2 − 𝑥0)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

On further calculation we get the final result as  

 

𝑎2 =

𝑦2−𝑦1

𝑥2−𝑥1
−

𝑦1−𝑦0

𝑥1−𝑥0

(𝑥2 − 𝑥0)
 

Now let us define new notation as  

𝑎1 =
𝑦1 − 𝑦0

𝑥1 − 𝑥0
= 𝑓[𝑥0, 𝑥1] 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝑎2 =

𝑦2−𝑦1

𝑥2−𝑥1
−

𝑦1−𝑦0

𝑥1−𝑥0

(𝑥2 − 𝑥0)
= 𝑓[𝑥0, 𝑥1, 𝑥2] 

𝑎2 = 𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3]…… 

𝑎𝑛 = 𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3, ……𝑥𝑛] 

The polynomial 𝑝𝑛(𝑥) which passes through the given points is 

𝑝𝑛(𝑥) = 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0) + 𝑓[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1)

+ 𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3](𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥

− 𝑥2)…… . 𝑓[𝑥0, 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛](𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)… (𝑥

− 𝑥𝑛−1) 
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This polynomial is called Newtons divided difference interpolation  

Example : Given below is a table of data for log 𝑥, estimate log 2.5using second 

order newton 

𝑖 0 1 2 3 

𝑥𝑖 1 2 3 4 

log 𝑥𝑖 0 0.3010 0.4771 0.6021 

 

Solution 

𝑎0 = 𝑓[𝑥0] = 𝑦0 = 0 

𝑎1 = 𝑓[𝑥0, 𝑥1] =
𝑦1 − 𝑦0

𝑥1 − 𝑥0
=

0.3010 − 0

2 − 1
= 0.3010 

𝑎2 = 𝑓[𝑥0, 𝑥1, 𝑥2] =

𝑦2−𝑦1
𝑥2−𝑥1

−
𝑦1−𝑦0
𝑥1−𝑥0

(𝑥2−𝑥0)
=

0.4771−0.3010

3−2
−

0.3010−0

2−1

(3−1)
= −0.0625use  

Now,  

𝑝𝑛(𝑥) = 𝑓[𝑥0] + 𝑓[𝑥0, 𝑥1](𝑥 − 𝑥0) + 𝑓[𝑥0, 𝑥1, 𝑥2](𝑥 − 𝑥0)(𝑥 − 𝑥1) 

= 0 + 0.3010 ∗ (𝑥 − 1) + (−0.0625)(𝑥 − 1)(𝑥 − 2) 

= 0.3010 ∗ (𝑥 − 1) − 0.0625(𝑥 − 1)(𝑥 − 2) 

𝑝𝑛(2.5) = 0.3010 ∗ (2.5 − 1) − 0.0625(2.5 − 1)(2.5 − 2) 

= 0.3010 ∗ 1.5 − 0.0469 

= 0.4046 

Newtons divided difference table:  

The alternative way of finding the coefficients(𝑎0,𝑎1, 𝑎2 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛)  values to 

use Newton divided difference table, for given (𝑥0,𝑓0),(𝑥1,𝑓1),(𝑥2,𝑓2),(𝑥3𝑓3) and 

(𝑥4,𝑓4) is called Newton’s divided difference table.  

Example : find the functional value for 𝑥 = 7 using newton interpolation 

polynomial  

x 5 6 9 11 

f(x) 12 13 14 16 
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Since there are four data points the required polynomial will be of the order 3 

𝑝3(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1)

+ 𝑎3(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2) 

To get the value of 𝑎0, 𝑎1, 𝑎2, 𝑎3 we are going to use newton divided difference 

table  

x f  1st Order 

Difference  

2nd Order Difference 

5 12    

  13 − 12

6 − 5
= 1 

  

6 13  1
3⁄ − 1

9 − 5
= −1

6⁄  

 

  14 − 13

9 − 6
= 1

3⁄  

 2
15⁄ −(−1

6⁄ )

11−5
=1

20⁄  

9 14  1 − 1
3⁄

11 − 6
= 2

5⁄  
 

  16 − 14

11 − 9
= 1 

  

11 16    

 

 

From table 𝑎0 = 12, 𝑎1 = 1, 𝑎2 = −1
6⁄ , 𝑎3 = 1

20⁄  

Now 𝑝3(𝑥) = 12 + 1(𝑥 − 5) − 1
6⁄ (𝑥 − 5)(𝑥 − 6) + 1

20⁄ (𝑥 − 5)(𝑥 −

6)(𝑥 − 9) 

Now substitute x=7 in above expression and we get 

𝑝3(𝑥) = 12 + 1(7 − 5) − 1
6⁄ (7 − 5)(7 − 6) + 1

20⁄ (7 − 5)(7 − 6)(7 − 9)

= 13.47 
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Evenly spaced data 

If x-value are evenly spaced getting an interpolating polynomial is considerably 

simplified. Most of the engineering and scientific table are available in this form.  

Newton’s forward difference interpolation/ Gregory Newton forward 

interpolation formula 

 

let 𝑦 = 𝑓(𝑥) be a function which takes the values 𝑦0, 𝑦1 … . . 𝑦𝑛 for values (n+1), 

at 𝑥0, 𝑥1, 𝑥2 … . 𝑥𝑛 of the independent variables x. let these values of x be 

equidistance i.e𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖. 𝑒  𝑖 = 0,1,2…𝑛. Let y(x) be the polynomial in x 

of the nth degree such that 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 = 0,1,2…𝑛. 

𝑦(𝑥) = 𝐴0 + 𝐴1(𝑥 − 𝑥0) + 𝐴2(𝑥 − 𝑥0)(𝑥 − 𝑥1)

+ 𝐴3(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)…… . . (𝑎) 

Putting 𝑥 = 𝑥0, 𝑥1 …… . 𝑥𝑛 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒𝑙𝑦  

We get, putting 𝑥 = 𝑥0 

 

𝑦0 = 𝐴0 

𝐴0 = 𝑦0 

putting 𝑥 = 𝑥1 and putting 𝐴0 = 𝑦0 

𝑦1 = 𝐴0 + 𝐴1(𝑥1 − 𝑥0) 

𝐴1 =
𝑦1 − 𝐴0

𝑥1 − 𝑥0
=

𝑦1 − 𝑦0

𝑥1 − 𝑥0
=

∆𝑦0

ℎ
 

Where h =equidistant gap. 

putting 𝑥 = 𝑥2 and putting values of 𝐴0, 𝐴1 

 

𝑦2 = 𝐴0 + 𝐴1(𝑥1 − 𝑥0)+𝐴2(𝑥2 − 𝑥0)(𝑥2 − 𝑥1) 

𝐴2 =
𝑦2 − 𝐴0 − 𝐴1(𝑥2 − 𝑥0)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
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=
𝑦2 − 𝑦0 −

𝑦1−𝑦0

𝑥1−𝑥0
(𝑥2 − 𝑥0)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

𝑥2 − 𝑥0 = (𝑥2 − 𝑥1) + (𝑥1 − 𝑥0) = ℎ + ℎ = 2ℎ 

 

=
𝑦2 − 𝑦0 −

𝑦1−𝑦0

ℎ
2ℎ

(2ℎ)(ℎ)
 

=
𝑦2 − 𝑦0−2𝑦1 + 2𝑦0

2ℎ2
 

=
𝑦2−2𝑦1 + 𝑦0

2ℎ2
 

=
∆2𝑦0

2! ℎ2
 

Similarly 

𝐴3 =
∆3𝑦0

3! ℎ3
 

 

Similarly, and so on putting these values in equation (a), we get 

𝑦(𝑥) = 𝑦0 +
∆𝑦0(𝑥 − 𝑥0)

ℎ
+

∆2𝑦0(𝑥 − 𝑥0)(𝑥 − 𝑥1)

2! ℎ2

+
∆3𝑦0(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)

3! ℎ3
…… . . (𝑏) 

Putting 
(𝑥−𝑥0)

ℎ
= 𝑝, 𝑖. 𝑒 𝑥 = 𝑥0 + 𝑝ℎ where p is a real number 

Finally we get 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝 − 1)∆2𝑦0

2!
+

𝑝(𝑝 − 1)(𝑝 − 2)∆3𝑦0

3!
+ ⋯

+
𝑝(𝑝 − 1)… [𝑝 − (𝑛 − 1)]∆𝑛𝑦0

𝑛!
 

Where 𝑦𝑝 = 𝑦(𝑥0 + 𝑝ℎ) is known as Gregory Newton forward interpolation 

formula. 
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Gregory Newton Backward Interpolation Formula 

 

let 𝑦 = 𝑓(𝑥) be a function which takes the values 𝑦0, 𝑦1 … . . 𝑦𝑛 for values (n+1), 

at 𝑥0, 𝑥1, 𝑥2 … . 𝑥𝑛 of the independent variables x. let these values of x be 

equidistance i.e𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖. 𝑒  𝑖 = 0,1,2…𝑛. Let y(x) be the polynomial in x 

of the nth degree such that 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 = 0,1,2…𝑛. Suppose it is required to 

evaluate y(x) near the end of the table value, then we can assume that, 

𝑦(𝑥) = 𝐴0 + 𝐴1(𝑥 − 𝑥𝑛) + 𝐴2(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛−1)

+ 𝐴3(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛−1)(𝑥 − 𝑥𝑛−2) + ⋯

+ ⋯𝐴𝑛(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛−1)… (𝑥 − 𝑥1)…… (𝑎) 

Putting 𝑥 = 𝑥𝑛, 𝑥𝑛−1 …… . 𝑥0 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑖𝑣𝑒𝑙𝑦 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑎 

We get, putting 𝑥 = 𝑥𝑛 

 

𝐴0 = 𝑦(𝑥𝑛) = 𝑦𝑛 

putting 𝑥 = 𝑥𝑛−1 and putting 𝐴0 = 𝑦𝑛 

𝑦(𝑥𝑛−1) = 𝑦𝑛−1 = 𝐴0 + 𝐴1(𝑥𝑛−1 − 𝑥𝑛) 

putting 𝑥 = 𝑥𝑛−2 

𝑦(𝑥𝑛−2) = 𝑦𝑛−2 = 𝐴0 + 𝐴1(𝑥𝑛−2 − 𝑥𝑛)+𝐴2(𝑥𝑛−2 − 𝑥𝑛)(𝑥𝑛−2 − 𝑥𝑛−1) 

Solving above equation for values of A, we get 
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𝐴1 =
𝑦𝑛−1 − 𝐴0

𝑥𝑛−1 − 𝑥𝑛
=

𝑦𝑛−1 − 𝑦𝑛

𝑥𝑛−1 − 𝑥𝑛
=

𝑦𝑛 − 𝑦𝑛−1

𝑥𝑛 − 𝑥𝑛−1
=

∇𝑦𝑛

ℎ
 

Where h =equidistant gap. 

𝐴2 =
𝑦𝑛−2 − 𝐴0 − 𝐴1(𝑥𝑛−2 − 𝑥𝑛)

(𝑥𝑛−2 − 𝑥𝑛)(𝑥𝑛−2 − 𝑥𝑛−1)
 

=
𝑦𝑛−2 − 𝑦𝑛 − (𝑦𝑛 − 𝑦𝑛−1)(−2)

(−2ℎ)(−ℎ)
𝑥

1

ℎ
 

=
𝑦𝑛−2𝑦𝑛−1 + 2𝑦𝑛−2

2ℎ2
 

=
∇2𝑦𝑛

2! ℎ2
 

Similarly 

𝐴3 =
∇3𝑦𝑛

3! ℎ3
 

And so on 

Putting these values in equation a we get 

𝑦(𝑥) = 𝑦𝑛 +
∇𝑦𝑛(𝑥 − 𝑥𝑛)

ℎ
+

∇2𝑦𝑛(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛−1)

2! ℎ2

+
∇3𝑦𝑛(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛−1)(𝑥 − 𝑥𝑛−2)

3! ℎ3
…… . . (𝑏) 

Putting 
(𝑥−𝑥𝑛)

ℎ
= 𝑝, 𝑖. 𝑒 𝑥 = 𝑥𝑛 + 𝑝ℎ where p is a real number 

Finally we get 

𝑦𝑝 = 𝑦𝑛 + 𝑝∆𝑦𝑛 +
𝑝(𝑝 + 1)∇2𝑦𝑛

2!
+

𝑝(𝑝 + 1)(𝑝 + 2)∇3𝑦𝑛

3!
+ ⋯

+
𝑝(𝑝 + 1)(𝑝 + 2)… [𝑝 + (𝑛 − 1)]∇𝑛𝑦𝑛

𝑛!
 

Where 𝑦𝑝 = 𝑦(𝑥𝑛 + 𝑝ℎ) is known as Gregory Newton Backward interpolation 

formula. 
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Example 1: Estimate the value of sin 𝜃  𝑎𝑡 𝜃 = 25° , using Newton Gregory 

Forward difference formula with the help of following table  

𝜃 10 20 30 40 50 

sin 𝜃 0.1736 0.3420 0.5 0.6428 0.7660 

 

Solution 

In order to use newtons Gregory difference formula we need the values of ∆𝑛. 

These coefficients can be obtained from the difference table given below  

𝜃 sin 𝜃 ∆𝑦𝑛 ∆2𝑦𝑛 ∆3𝑦𝑛 ∆4𝑦𝑛 

10 0.1736     

  0.1684    

20 0.3420  -0.0104   

  0.1580  -0.0048  

30 0.5  -0.0152  0.0004 

  0.1428  -0.0041  

40 0.6428  -0.0196   

  0.1232    

50 0.7660     

 

The Newton’s Forward Difference Interpolation Formula 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝 − 1)∆2𝑦0

2!
+

𝑝(𝑝 − 1)(𝑝 − 2)∆3𝑦0

3!

+
𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)∆4𝑦0

4!
 

 

Where 𝑝 =
𝑥−𝑥0

ℎ
 for 𝜃 = 25, 𝑝 =

25−10

10
= 1.5  

𝑦𝑝 = 0.1736 + 1.5 × 0.1684 +
1.6(1.5 − 1)(−0.0104)

2!

+
1.5(1.5 − 1)(1.5 − 2)(−0.0048)

3!

+
1.5(1.5 − 1)(1.5 − 2)(1.5 − 3)0.004

4!
 

= 0.1736 + 0.2526 − 0.0039 + 0.0003 + 0.0000 
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= 0.4226 

 

Extra solving using backward formula  

𝑦𝑝 = 𝑦𝑛 + 𝑝∆𝑦𝑛 +
𝑝(𝑝 + 1)∇2𝑦𝑛

2!
+

𝑝(𝑝 + 1)(𝑝 + 2)∇3𝑦𝑛

3!

+
𝑝(𝑝 + 1)(𝑝 + 2)(𝑃 + 3)∇4𝑦𝑛

4!
 

𝑝 =
25 − 50

10
= −2.5 

𝑦(25) = 0.7660 + (−2.5)(0.1232) +
(−2.5)(−2.5 + 1)(−0.0196)

2!

+
(−2.5)(−2.5 + 1)(−2.5 + 2)(−0.0044)

3!

+
(−2.5)(−2.5 + 1)(−2.5 + 2)(−2.5 + 3)(0.0004)

4!
= 0.7660 − 0.3080 − 0.0368 + 0.0014 + 0 

= 0.4226 

Example 2 : Find the values of y for x=0.8 for the given set of values using 

Newton’s Backward Difference Interpolation Formula 

X 0.5 1 1.5 2 2.5 3 

Y 2.1990 2.5 2.6761 2.8010 2.8979 2.9771 

 

Now the difference table is  

X y ∇𝑦𝑛 ∇2𝑦𝑛 ∇3𝑦𝑛 ∇4𝑦𝑛 ∇5𝑦𝑛 

0.5 2.1990      

1 2.5 0.3010     

1.5 2.6761 0.1761 -0.1249    

2 2.8010 0.1249 -0.0512 0.0737   

2.5 2.8979 0.0969 -0.0280 0.0232 -0.0505  

3 2.9771 0.0792 -0.0177 0.0103 -0.0129 0.0376 
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Now, Newton’s Backward Interpolation Formula  

𝑦𝑝 = 𝑦𝑛 + 𝑝∆𝑦𝑛 +
𝑝(𝑝 + 1)∇2𝑦𝑛

2!
+

𝑝(𝑝 + 1)(𝑝 + 2)∇3𝑦𝑛

3!

+
𝑝(𝑝 + 1)(𝑝 + 2)(𝑃 + 3)∇4𝑦𝑛

4!

+
𝑝(𝑝 + 1)(𝑝 + 2)(𝑃 + 3)(𝑃 + 4)∇5𝑦𝑛

5!
 

Where  

𝑝 =
𝑥 − 𝑥𝑛

ℎ
=

0.8 − 3

0.5
= −4.4 

Now 

𝑦𝑝 = 𝑦(0.8) = 2.9771 + (−4.4)(0.0792) +
(−4.4)(−4.4 + 1)(−0.0177)

2!

+
(−4.4)(−4.4 + 1)(−4.4 + 2)(0.0103)

3!

+
(−4.4)(−4.4 + 1)(−4.4 + 2)(−4.4 + 3)(−0.0129)

4!

+
(−4.4)(−4.4 + 1)(−4.4 + 2)(−4.4 + 3)(−4.4 + 4)(0.0376)

5!
= 2.9771 − 0.3485 − 0.1324 − 0.0616 − 0.0270 − 0.0063 

= 2.4013 
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Spline curves 

There are many times when fitting an interpolating polynomial to data points is 

very difficult. Here is an example where we try to fit to data pairs from known 

functions. 

 

None of the polynomial is a good representation of the function. In particular we 

observe that eight-degree polynomial derivatives widely near x=2. 

One approach to overcome this problem is to divide the entire range of points into 

sub intervals and use local low order polynomials to interpolate each sub 

intervals, such polynomials are called piecewise polynomials. 
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Figure piecewise polynomial interpolation 

Such piecewise polynomials are called splines functions. So, the splines functions 

look smooth at the connecting points, the connecting points are called knots or 

nodes. 

 

The formula for obtaining cubic spline function: 

(1) We write the formula for a cubic polynomial 𝑠𝑖(𝑥) as, 

        si(x) = (ai-1/6hi) (hi
2 ui-ui

3) +(ai/6hi) (ui-1
3 – hi

2 ui-1) +1/hi (fi ui-1 -fi-1 ui) 

       where, ui = x-xi  

(2) Formula for obtaining “ai” values: 

(I) For 3 data points: 
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                   ℎ𝑖𝑎𝑖−1 + 2(ℎ𝑖 + ℎ𝑖+1)𝑎𝑖 + ℎ𝑖+1𝑎𝑖+1 = 6(
𝑓𝑖+1−𝑓𝑖

ℎ𝑖+1
−

𝑓𝑖−𝑓𝑖−1

ℎ𝑖
)  

(II) For 4 data points:    

                    [
2(ℎ1 + ℎ2) ℎ2

ℎ2 2(ℎ2 + ℎ3)
] [

𝑎1

𝑎2
] = [

𝐷1

𝐷2
] 

                   Where, Di = 6 (
𝑓𝑖+1−𝑓𝑖

ℎ𝑖+1
−

𝑓𝑖−𝑓𝑖−1

ℎ𝑖
) 

Q.N. (1) Given the data points as below: 

i 0 1 2 

xi 4 (x0) 9 (x1) 16 (x2) 

f(xi) 2 (f0) 3 (f1) 4 (f2) 

         Estimate the functional value at x=7 using cubic spline technique. 

        Solution : h1 =5, h2 =7 Now, using the formula, 

                  ℎ𝑖𝑎𝑖−1 + 2(ℎ𝑖 + ℎ𝑖+1)𝑎𝑖 + ℎ𝑖+1𝑎𝑖+1 = 6(
𝑓𝑖+1−𝑓𝑖

ℎ𝑖+1
−

𝑓𝑖−𝑓𝑖−1

ℎ𝑖
)…(A) 

           Put i=1 since x=7 lies in the domain of s1(x). i.e. 

               ℎ1𝑎0 + 2(ℎ1 + ℎ2)𝑎1 + ℎ2𝑎2 = 6(
𝑓2−𝑓1

ℎ2
−

𝑓1−𝑓0

ℎ1
)……(B) 

Now, we know from the cubic spline technique, a0= an=0 i.e. a0= a2=0 

 So, from (B) we get, 2(5+7) a1=6[1/7-1/5].Therefore, a1 = -0.0143 

Now the cubic spline function, 

si(x) = (ai-1/6hi) (hi
2 ui-ui

3) +(ai/6hi) (ui-1
3 – hi

2 ui-1) +1/hi (fi ui-1 -fi-1 ui)…(C)  

where, ui = x-xi 

put i=1 in (C) we get, 

s1(x) = (a0/6h1) (h1
2 u1-u1

3) +(a1/6h1) (u0
3 – h1

2 u0) +1/h1 (f1u0 -f0 u1)  

where, u0 =x-x0 and u1 =x-x1 

So, s1(7) = 2.6229 i.e. f(7) = 2.6229Ans. 
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Q.N. ( 2): Given the data points as below:  

  i         0 1  2 3 

xi 1(x0) 2(x1) 3(x2) 4(x3) 

f(xi) 0.5(f0) 0.3333(f1) 0.25(f2) 0.20(f3) 

        Estimate the functional value at x=2.5 using cubic spline technique. 

    Solution: h1 =1, h2 =1, h3 =1 and a0= 0, a1, a2, a3=0 (from cubic spline technique) 

                 [
2(1 + 1) 1

1 2(1 + 1)
] [

𝑎1

𝑎2
] = [

𝐷1

𝐷2
]    

Now D1 (i=1) = 6 (
𝑓2−𝑓1

ℎ2
−

𝑓1−𝑓0

ℎ1
) = 0.5004 

 

and D2(i=2) = 6 (
𝑓3−𝑓2

ℎ3
−

𝑓2−𝑓1

ℎ2
) =0.1995 

Now, a1 = 0.120 and a2 =0.0199 

Since x=2.5 lies on the domain of s2(x) i.e. i=2 

Now, the cubic spline function, 

s2(x) = (a1/6h2) (h2
2 u2-u2

3) +(a2/6h2) (u1
3 – h2

2 u1) +1/h2 (f2 u1 -f1 u2) 

 where, u2 = x-x2 , u1 = x-x1 

So, s2(2.5) = 0.2829 i.e. f(2.5) = 0.2829 

Practice questions: 

1. Estimate the value of ln(3.5) using Newton-Gregory Forward Difference 

Formula using given data  

x 1.0 2.0 3.0 4.0 

ln 𝑥 0.0 0.6931 1.0986 1.3863 

2. Estimate the value of sin 𝜃  𝑎𝑡 𝜃 = 45°&15° , using Newton Gregory 

Forward  and Backward difference formula with the help of following table 

and compare the results 

𝜃 10 20 30 40 50 

sin 𝜃 0.1736 0.3420 0.5 0.6428 0.7660 
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Curve Fitting: 

In many applications it is often necessary to establish a mathematical relationship 

between experimental values, this relationship may be used for either testing 

existing mathematical model or establishing new ones. The mathematical 

equation can also be used to predict or forecast values of the dependent variables.  

Suppose the value of y for the different values of x are given, if we want to know 

the effect of x and y then we may write a functional relationship 𝑦 = 𝑓(𝑥) 

The variable y is called dependent variables and x is the independent variable. 

The relationship mat be either linear or non linear. We shall discuss the technique 

known as least squares regression to  fit data under following situation. 

Relationship is linear 

Fitting a straight line is the simplest approach of regression analysis. Let us 

consider the mathematical equation of a straight line  

𝑦 = 𝑎 + 𝑏𝑥 = 𝑓(𝑥) 

We know that a is the intercept of the line and b is the slope. Consider the 

points(𝑥𝑖 , 𝑦𝑖), then the vertical distance of this point from the line  𝑓(𝑥) = 𝑎 +

𝑏𝑥 is 𝑞𝑖 , then  

𝑞𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖) 

= 𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖) 

There are various approaches that would be tries for fitting the best line through 

the data: 

1. Minimize the sum of errors  

2. Minimize the sum of absolute value of errors 

3. Minimize the sum of squares of errors 
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Least Square regression: 

Let the sum squares of individual errors be expressed as  

𝑄 = ∑𝑞𝑖
2

𝑛

𝑖=1

= ∑[𝑦𝑖 − 𝑓(𝑥𝑖)]
2

𝑛

𝑖=1

 

= ∑[𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖]
2

𝑛

𝑖=1

 

In this method of least squares we choose a & b such that Q is minimum, since Q 

depends on a & b, a necessary condition for Q to be minimum is  

𝜕𝑄

𝜕𝑎
= 0,

𝜕𝑄

𝜕𝑏
= 0 

Then  

𝜕𝑄

𝜕𝑎
= −2∑(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0

𝑛

𝑖=1

 

𝜕𝑄

𝜕𝑏
= −2∑𝑥𝑖(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0

𝑛

𝑖=1

 

Thus we can write as: 

∑(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖) = 0

𝑛

𝑖=1

 

∑𝑦𝑖 = 𝑛𝑎 + 𝑏 ∑𝑥𝑖 ……………    𝑎 

∑𝑥𝑖𝑦𝑖 = 𝑎 ∑𝑥𝑖 + 𝑏 ∑𝑥𝑖
2 ……………    𝑏 

These are called normal equations solving for a & b we get 

𝑏 =
𝑛 ∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖 ∑𝑦𝑖

𝑛 ∑𝑥𝑖
2 − (∑𝑥𝑖)

2
 

𝑎 =
∑𝑦𝑖

𝑛
− 𝑏

∑𝑥𝑖

𝑛
= �̅� − 𝑏�̅� 
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Where �̅� 𝑎𝑛𝑑 �̅� are the average of x and y values. 

Example: Fit a straight line to the following set of data 

X 1 2 3 4 5 

Y 3 4 5 6 8 

 

Solution  

The various summations are given below 

 𝒙𝒊 𝒚𝒊 𝒙𝒊
𝟐 𝒙𝒊𝒚𝒊 

1 3 1 3 

2 4 4 8 

3 5 9 15 

4 6 16 24 

5 8 25 40 

𝚺 15 26 55 90 

 

now  

𝑏 =
𝑛 ∑𝑥𝑖𝑦𝑖 − ∑𝑥𝑖 ∑𝑦𝑖

𝑛 ∑𝑥𝑖
2 − (∑𝑥𝑖)

2
 

𝑏 =
5 ∗ 90 − 15 ∗ 26

5 ∗ 55 − 152
 

= 1.20 

 

 

 

𝑎 =
∑𝑦𝑖

𝑛
− 𝑏

∑𝑥𝑖

𝑛
 

=
26

5
− 1.2

15

5
 

= 1.6 

Therefore, the linear equation is 𝑦 = 1.6 + 1.2𝑥 
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Practice : 

1. Fit a linear curve through the following data points 

X 1 2 3 4 5 6 7 

Y 0.5 2.5 2.0 4.0 3.5 6.0 5.5 

Answer :𝑦 = 0.0714 + 0.839𝑥 

2. In an organization , systematic efforts were introduces to reduce the 

employee absenteeism and result for the first 10 months are shown below, 

fit a linear least square lines to the data. 

Months  1 2 3 4 5 6 7 8 9 10 

Absentees(%) 10 9 9 8.5 9 8 8.5 7 8 7.5 

 

3. The following table shows heights(h) and weights, find the regression line 

and estimate the weights of the person with the following heights. 

a) 140cm  

b) 163 cm 

c) 172.5 cm 

h(cm) 175 165 160 180 150 170 155 185 

w(kg) 68 58 59 71 51 62 53 68 

 

Fitting Transcendental equations  

In many cases of course data from experimental test are non linear, so we need to 

fit them some functions other than first degree polynomial some popular forms 

are  

𝑦 = 𝑎𝑥𝑏 𝑜𝑟 𝑦 = 𝑎𝑒𝑏𝑥 

Now for 𝑦 = 𝑎𝑥𝑏 if we take logarithms on both sides we get  

ln 𝑦 = ln 𝑎 + bln 𝑥 

now let is write as  

𝑧 = 𝐴 + 𝑏𝑥 

 𝑧 = ln 𝑦, 𝐴 = ln 𝑎 , 𝑋 = ln 𝑥 

This equation is similar in form to linear equation and therefore using the same 

procedure we can evaluate the parameters A & B. 
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𝑏 =
𝑛 ∑ ln 𝑥𝑖 ln 𝑦𝑖 − ∑ ln 𝑥𝑖 ∑ ln 𝑦𝑖

𝑛 ∑ (ln 𝑥𝑖)
2 − (∑ ln 𝑥𝑖)

2
 

ln 𝑎 = 𝐴 =
(∑ ln 𝑦𝑖 − 𝑏 ∑ ln 𝑥𝑖)

𝑛
  

𝑎 = 𝑒𝐴 

 

Example : given the data table below , fit a power function model of the form 𝑦 =

𝑎𝑥𝑏 

𝑥 1 2 3 4 5 

𝑦 0.5 2 4.5 8 12.5 

 

The various quantities requires are  

𝑥𝑖 𝑦𝑖 ln 𝑥𝑖 ln 𝑦𝑖 (ln 𝑥𝑖)
2 (ln 𝑥𝑖)(ln 𝑦𝑖) 

1 0.5 0 -0.6931 0 0 

2 2 0.6931 0.6931 0.4804 0.4804 

3 4.5 1.0986 1.5041 1.2069 1.6524 

4 8 1.3863 2.0794 1.9218 2.8827 

5 12.5 1.6094 2.5257 2.5902 4.0649 

∑  4.7874 6.1092 6.1993 9.0804 

 

𝑏 =
𝑛 ∑ ln 𝑥𝑖 ln 𝑦𝑖 − ∑ ln 𝑥𝑖 ∑ ln 𝑦𝑖

𝑛 ∑ (ln 𝑥𝑖)
2 − (∑ ln 𝑥𝑖)

2
 

=
5 ∗ 9.0804 − 4.7874 ∗ 6.1092

5 ∗ 6.1993 − 4.78742
 

= 2 

 

𝐴 =
(∑ ln 𝑦𝑖 − 𝑏 ∑ ln 𝑥𝑖)

𝑛
 

=
6.1092 − 2 ∗ 4.7874

5
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= −0.6981 

𝑎 = 𝑒𝐴 = 𝑒−0.6931 = 0.5 

𝑦 = 𝑎𝑥𝑏 = 0.5𝑥2 

𝑦 = 0.5𝑥2 

 

Practice: 

1. The temperature of a metal strip was measured at various time intervals 

during heating and the values are given in the table 

Time,t(min) 1 2 3 4 

Temp,𝑇∘(𝑐) 70 83 150 124 

 

If the relationship between the temperature T and time t is of the form  𝑇 =

𝑏𝑒
𝑡

4⁄ + 𝑎, estimate temp at t=6min. 

2. Use the exponential model 𝑦 = 𝑎𝑒𝑏𝑥 to fit the data 

X 0.4 0.8 1.2 1.6 2.0 2.4 

Y 75 100 140 200 270 375 

 

Fitting a polynomial function  

 

When a given set of data does not appear to satisfy a linear equation, we can try 

a suitable polynomial as regression curve to fit the data. The least squares 

technique can be readily used to fit the data to a polynomial 

Consider a polynomial of degree m-1. 

𝑓(𝑥) = 𝑦 = 𝑎1 + 𝑎1𝑥 + 𝑎3𝑥
2 + 𝑎4𝑥

3 + ⋯…+ 𝑎𝑚𝑥𝑚−1 

If the data contains n set of x any y values, then the sum squares of the errors is 

given by  

𝑄 = ∑[𝑦𝑖 − 𝑓(𝑥𝑖)]
2

𝑛

𝑖=1
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Since f(x) is a polynomial and contains coefficient 𝑎1, 𝑎2, 𝑎3…. we have to 

estimate all m coefficients as before we have the following m equations that can 

be solved for these coefficients i.e 

𝜕𝑄

𝜕𝑎1
= 0,

𝜕𝑄

𝜕𝑎2
= 0… .

𝜕𝑄

𝜕𝑎𝑚
= 0 

Consider a general term  

𝜕𝑄

𝜕𝑎𝑗
= −2∑[𝑦𝑖 − 𝑓(𝑥𝑖)]

𝜕𝑓(𝑥𝑖)

𝜕𝑎𝑗
= 0

𝑛

𝑖=1

 

𝜕𝑓(𝑥𝑖)

𝜕𝑎𝑗
= 𝑥𝑖

𝑗−1 

Thus, we have  

∑[𝑦𝑖 − 𝑓(𝑥𝑖)]𝑥𝑖
𝑗−1 = 0

𝑛

𝑖=1

 𝑗 = 1,2,3… . .𝑚 

∑[𝑦𝑖𝑥𝑖
𝑗−1 − 𝑥𝑖

𝑗−1𝑓(𝑥𝑖)] = 0

𝑛

𝑖=1

 

Substituting for 𝑓(𝑥𝑖)  

∑𝑥𝑖
𝑗−1

𝑛

𝑖=1

(𝑎1 + 𝑎1𝑥𝑖 + 𝑎3𝑥𝑖
2 + 𝑎4𝑥𝑖

3 + ⋯…+ 𝑎𝑚𝑥𝑖
𝑚−1) = ∑𝑦𝑖𝑥𝑖

𝑗−1

𝑛

𝑖=1

 

These are m equations and each summation is for i=1 to n 

𝑎1𝑛 + 𝑎2∑𝑥𝑖 + 𝑎3∑𝑥𝑖
2 + 𝑎4∑𝑥𝑖

3 + ⋯…+ 𝑎𝑚∑𝑥𝑖
𝑚−1 = ∑𝑦𝑖 

𝑎1∑𝑥𝑖 + 𝑎2∑𝑥𝑖
2 + 𝑎3∑𝑥𝑖

3 + 𝑎4∑𝑥𝑖
4 + ⋯…+ 𝑎𝑚∑𝑥𝑖

𝑚 = ∑𝑦𝑖𝑥𝑖 … 

 

𝑎1∑𝑥𝑖
𝑚−1 + 𝑎2∑𝑥𝑖

𝑚 + 𝑎3∑𝑥𝑖
𝑚+1 + 𝑎4∑𝑥𝑖

𝑚+2 + ⋯…+ 𝑎𝑚∑𝑥𝑖
2𝑚−2

= ∑𝑦𝑖𝑥𝑖
𝑚−1 
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The set of m equation can be represented in matrix as CA=B 

𝐶 =

[
 
 
 

𝑛 ∑𝑥𝑖 ∑𝑥𝑖
2 … ∑𝑥𝑖

𝑚−1

∑𝑥𝑖 ∑𝑥𝑖
2 ∑𝑥𝑖

3 … ∑𝑥𝑖
𝑚

⋮
∑𝑥𝑖

𝑚−1
⋮

∑𝑥𝑖
𝑚

⋮
∑𝑥𝑖

𝑚+1

…
…

⋮

∑𝑥𝑖
2𝑚−2]

 
 
 

 

                             𝐴 =

[
 
 
 
 
𝑎1

𝑎2
𝑎3

⋮
𝑎𝑚]

 
 
 
 

 𝐵 =

[
 
 
 
 

∑𝑦𝑖

∑𝑦𝑖𝑥𝑖

∑𝑦𝑖𝑥𝑖
2

⋮
∑𝑦𝑖𝑥𝑖

𝑚−1]
 
 
 
 

 

Example : Fit a second order polynomial to the data in the table  

x 1.0 2 3 4 

y 6 11 18 27 

 

The order of the polynomial is 2 and therefore we will have 3 simultaneous 

equations as shown below: 

 

𝑎1𝑛 + 𝑎2∑𝑥𝑖 + 𝑎3∑𝑥𝑖
2 = ∑𝑦𝑖 

𝑎1∑𝑥𝑖 + 𝑎2∑𝑥𝑖
2 + 𝑎3∑𝑥𝑖

3 = ∑𝑦𝑖𝑥𝑖 

𝑎1∑𝑥𝑖
2 + 𝑎2∑𝑥𝑖

3 + 𝑎3∑𝑥𝑖
4 = ∑𝑦𝑖𝑥𝑖

2 

 

 

 𝒙 𝒚 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚𝒙 𝒚𝒙𝟐 

 1 6 1 1 1 6 6 

 2 11 4 8 16 22 44 

 3 18 9 27 81 54 162 

 4 27 16 64 256 108 432 

∑ 10 62 30 100 354 190 644 
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Substituting these values, we get, 

 

4𝑎1 + 10𝑎2 + 30𝑎3 = 62 

10𝑎1 + 30𝑎2 + 100𝑎3 = 190 

30𝑎1 + 100𝑎2 + 354𝑎3 = 644 

 

On solving these equations gives,  

𝑎1 = 3, 𝑎2 = 2, 𝑎3 = 1 

Therefore, the least square quadratic polynomial is 𝑦 = 3 + 2𝑥 + 𝑥2 
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Chapter 3: Numerical Differentiation and Integration  

Let us consider a set of values (𝑥𝑖 , 𝑦𝑖) of a function. The process of computing 

the derivative or derivatives of that function at some values of x from the given 

set of values is called Numerical Differentiation. This may be done by first 

approximating the function by suitable interpolation formula and then 

differentiating. 

Derivatives using Newton’s Forward Difference formula 

Newton’s forward interpolation formula 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝−1)∆2𝑦0

2!
+

𝑝(𝑝−1)(𝑝−2)∆3𝑦0

3!
+

𝑝(𝑝−1)(𝑝−2)(𝑝−3)∆4𝑦0

4!
... (1) 

𝑝 =
𝑥 − 𝑥0

ℎ
 

Differentiating both sides of above equation with respect to p, we have 

𝑑𝑦

𝑑𝑝
= ∆𝑦0 +

(2𝑝 − 1)∆2𝑦0

2!
+

(3𝑝2 − 6𝑝 + 2 )∆3𝑦0

3!
+ ⋯     (2) 

 

 

Now  

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑝

𝑑𝑝

𝑑𝑥
=

𝑑𝑦

𝑑𝑝

1

ℎ
 

∵  
𝑑𝑝

𝑑𝑥
=

1

ℎ
 

𝑑𝑦

𝑑𝑥
=

1

ℎ
[∆𝑦0 +

(2𝑝 − 1)∆2𝑦0

2!
+

(3𝑝2 − 6𝑝 + 2 )∆3𝑦0

3!

+
(4𝑝3 − 18𝑝2 + 22𝑝 − 6 )∆4𝑦0

4!
]… (3)    
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At 𝑥 = 𝑥0, 𝑝 = 0, hence putting p=0 in equation 3 we get 

𝑑𝑦

𝑑𝑥
|
𝑥=𝑥0

=
1

ℎ
[∆𝑦0 −

∆2𝑦0

2
+

∆3𝑦0

3
−

∆4𝑦0

4
]… (4) 

Differentiating equation 3 again with respect to x we get 

𝑑2𝑦

𝑑𝑥2
=

𝑑

𝑑𝑝
(
𝑑𝑦

𝑑𝑥
)
𝑑𝑝

𝑑𝑥
=

1

ℎ

𝑑

𝑑𝑝
(
𝑑𝑦

𝑑𝑥
) 

=
1

ℎ2
[∆2𝑦0 +

(𝑝 − 1)∆3𝑦0

1!
+

(6𝑝2 − 18𝑝 + 11 )∆4𝑦0

12
+ ⋯]  (5) 

Putting 𝑝 = 0 in equation 5 

𝑑2𝑦

𝑑𝑥2
|
𝑥=𝑥0

=
1

ℎ2
[∆2𝑦0 − ∆3𝑦0 +

11

12
∆4𝑦0] 

Similarly  

 

𝑑3𝑦

𝑑𝑥3
|
𝑥=𝑥0

=
1

ℎ3
[∆3𝑦0 −

3

2
∆4𝑦0 …] 

 

 

Derivates using Newton’s Backward Difference Formula  

 

Newton’s backward interpolation formula is 

𝑦 = 𝑦𝑛 + 𝑝∇𝑦𝑛 +
𝑝(𝑝+1)∇2𝑦𝑛

2!
+

𝑝(𝑝+1)(𝑝+2)∇3𝑦𝑛

3!
+

𝑝(𝑝+1)(𝑝+2)(𝑃+3)∇4𝑦𝑛

4!
... (8) 

𝑝 =
𝑥 − 𝑥𝑛

ℎ
……(9) 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑝

𝑑𝑝

𝑑𝑥
=

𝑑𝑦

𝑑𝑝

1

ℎ
 

𝑑𝑦

𝑑𝑝
=

1

ℎ
[∇𝑦𝑛 +

2𝑝 + 1

2!
∇2𝑦𝑛 +

3𝑝2 + 6𝑝 + 2 

3!
∇3𝑦0 + ⋯ ]  … (10)   
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At 𝑥 = 𝑥𝑛, 𝑝 = 0, hence putting p=0 in equation 10 we get 

𝑑𝑦

𝑑𝑥
|
𝑥=𝑥𝑛

=
1

ℎ
[∇𝑦𝑛 +

∇2𝑦𝑛

2
+

∇3𝑦𝑛

3
+

∇4𝑦𝑛

4
]… (11) 

 

Again, differentiating equation 10 with respect to x 

𝑑2𝑦

𝑑𝑥2
=

𝑑

𝑑𝑝
(
𝑑𝑦

𝑑𝑥
)
𝑑𝑝

𝑑𝑥
=

1

ℎ

𝑑

𝑑𝑝
(
𝑑𝑦

𝑑𝑥
) 

=
1

ℎ2
[∇2𝑦𝑛 +

6𝑝 + 6

3!
∇3𝑦𝑛 +

6𝑝2 + 18𝑝 + 11 

4!
∇4𝑦𝑛 + ⋯ ]… (12) 

Putting 𝑝 = 0 

𝑑2𝑦

𝑑𝑥2
|
𝑥=𝑥𝑛

=
1

ℎ2
[∇2𝑦𝑛 + ∇3𝑦𝑛 +

11 

12
∇4𝑦𝑛 + ⋯ ]… (13) 

 

Similarly  

𝑑3𝑦

𝑑𝑥3
|
𝑥=𝑥𝑛

=
1

ℎ3
[∇3𝑦𝑛 +

3 

2
∇4𝑦𝑛 + ⋯ ]… (14) 

Note:  first derivative is also as rate of change, so it can also be asked to find 

the velocity, second derivative to find acceleration etc. 

 

Example: Find the first, second and third derivate of 𝑓(𝑥)𝑎𝑡 𝑥 = 1.5 if  

𝑥 1.5 2.0 2.5 3.0 3.5 4.0 

𝑓(𝑥) 3.375 7.0 13.625 24 38.875 59.0 
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Solution  

We have to find the derivate at the points 𝑥 = 1.5, which is at the beginning of 

the given data. Therefore, we use the derivate of Newton’s Forward Interpolation 

formula. 

 Forward difference table is 

𝑥 𝑦 = 𝑓(𝑥) ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 ∆5𝑦 

1.5 3.375      

  3.625     

2.0 7.0  3    

  6.6250  0.75   

2.5 13.625  3.750  0  

  10.3750  0.75  0 

3.0 24.0  4.5  0  

  14.8750  0.75   

3.5 38.875  5.25    

  20.1250     

4.0 59.0      

  

Here 𝑥0 = 1.5, 𝑦0 = 3.375, ∆𝑦0 = 3.625, ∆2𝑦0 = 3, ∆3𝑦0 = 0.75, ∆4𝑦0 =

0, ℎ = 0.5 

Now using equation for finding the derivate  

𝑑𝑦

𝑑𝑥
|
𝑥=𝑥0

= 𝑓′(𝑥0) =
1

ℎ
[∆𝑦0 −

∆2𝑦0

2
+

∆3𝑦0

3
−

∆4𝑦0

4
+ ⋯] 

𝑓′(1.5) =
1

0.5
[3.625 −

3

2
+

0.75

3
−

0

4
+ ⋯] 

= 4.75 

Now  

𝑑2𝑦

𝑑𝑥2
|
𝑥=𝑥0

= 𝑓′′(1.5) =
1

ℎ2
[∆2𝑦0 − ∆3𝑦0 +

11

12
∗ 0] 

=
1

1.52
[3 − 0.75 +

11

12
∗ 0] 

= 9 
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Again  

𝑑3𝑦

𝑑𝑥3
|
𝑥=𝑥0

=
1

ℎ3
[∆3𝑦0 −

3

2
∆4𝑦0 …] 

=
1

1.53
[0.75] 

= 6 

 

 

Example: 

The population of a certain town (as obtained from central data) is shown in the 

following table 

Year  1951 1961 1971 1981 1991 

population 

(thousand) 

19.36 36.65 58.81 77.21 94.61 

 

Find the rate of growth of the population in the year 1981 

Solution 

Here we have to find the derivate at 1981 which is near the end of the table, hence 

we use the derivative of Newtons Backward difference formula. The table if 

difference is as follows: 

𝑥(year) 𝑦 =
𝑓(𝑥)(population) 

∇𝑦 ∇2𝑦 ∇3𝑦 ∇4𝑦 

1951 19.96     

  16.69    

1961 36.65  5.47   

  22.16  -9.23  

1971 58.81  -3.76  11.99 

  18.40  2.76  

1981 77.21  -1   

  17.40    

1991 94.61     
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Here ℎ = 10, 𝑥𝑛 = 1991, ∇𝑦𝑛 = 17.4, ∇2𝑦𝑛 = −1, ∇3𝑦𝑛 = 2.76, ∇4𝑦𝑛 = 11.99 

We know derivative for backward difference is: 

𝑑𝑦

𝑑𝑝
=

1

ℎ
[∇𝑦𝑛 +

2𝑝 + 1

2!
∇2𝑦𝑛 +

3𝑝2 + 6𝑝 + 2 

3!
∇3𝑦0

+
2𝑝3 + 9𝑝2 + 11𝑝 + 3 

4!
∇4𝑦0 ] 

Now we have to find out the rate of growth of the population in year 1981, so  

𝑝 =
𝑥 − 𝑥𝑛

ℎ
=

1981 − 1991

10
= −1 

∴ 𝑝 = −1, ℎ = 10 

𝑦′(1981) =
1

10
[17.4 +

2(−1) + 1

2
∗ (−1) +

3(−1)2 + 6(−1) + 2 

6
2.76

+
2(−1)3 + 9(−1)2 + 11(−1) + 3 

12
11.99 ] 

=
1

10
[17.4 + 0.5 − 0.46 − 0.992] 

= 1.6441 

Therefore, the rate of growth of the population in the year is 1981 is 1.6441 

Maxima and minima of tabulated function 

We know Newton’s forward interpolation formula as : 

𝑑𝑦

𝑑𝑥
=

1

ℎ
[∆𝑦0 +

(2𝑝 − 1)∆2𝑦0

2!
+

(3𝑝2 − 6𝑝 + 2 )∆3𝑦0

3!

+
(4𝑝3 − 18𝑝2 + 22𝑝 − 6 )∆4𝑦0

4!
… ]    

We know that maximum and minimum values of a function 𝑦 = 𝑓(𝑥) can be 

found by equating 𝑑𝑦/𝑑𝑥 to zero and solution for x 
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[∆𝑦0 +
(2𝑝 − 1)∆2𝑦0

2!
+

(3𝑝2 − 6𝑝 + 2 )∆3𝑦0

3!

+
(4𝑝3 − 18𝑝2 + 22𝑝 − 6 )∆4𝑦0

4!
+ ⋯ ]   

 

Now for keeping only up to third difference we have  

∆𝑦0 +
(2𝑝 − 1)∆2𝑦0

2!
+

(3𝑝2 − 6𝑝 + 2 )∆3𝑦0

3!
= 0 

Solving this for p, by substituting ∆𝑦0, ∆
2𝑦0, ∆

3𝑦0, we get 𝑥 as 𝑥0 + 𝑝ℎ at which 

y is a maximum or minimum 

Example: Given the following data, find the maximum value of y  

𝑥 -1 1 2 3 

𝑦 -21 15 12 3 

 

Since the arguments (x -points) aren’t equally spaced we use Newton’s Divided 

Difference formula 

  

𝑦(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1)

+ 𝑎3(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)… 

𝑥 𝑓(𝑥)    

-1 -21    

  18∗   

1 15  −7∗∗  

  -3  1 

2 12  -3  

  -9   

3 3    

 

Note :  

∗ 18 =
15 − (−21)

1 − (−1)
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∗∗ −7 =
−3 − 18

2 − (−1)
 

 

 

From above table, 

 𝑎0 = −21, 𝑎1 = 18, 𝑎2 = −7, 𝑎3 = 1, 

𝑓(𝑥) = −21 + 18(𝑥 + 1) + (𝑥 + 1)(𝑥 − 1)(−7) + (𝑥 + 1)(𝑥 − 1)(𝑥 − 2)(1) 

𝑓(𝑥) = 𝑥3 − 9𝑥2 + 17𝑥 + 6 

For maxima and minima 
𝑑𝑦

𝑑𝑥
= 0 

3𝑥2 − 18𝑥 + 17 = 0 

 

On solving, we get, 

𝑥 = 4. .8257 𝑜𝑟 1.1743 

Since x=4.8257 is out of range [-1 to 3] , we take x=1.1743 

∴ 𝑦𝑚𝑎𝑥 = 𝑥3 − 9𝑥2 + 17𝑥 + 6 

= 1.17433 − 9 ∗ 1.17342 + 17 ∗ 1.1743 + 6 

= 15.171612 

 

Differentiating continuous functions:  

If the process of approximating the derivative 𝑓′(𝑥) of the function f(x), when 

the function itself is available 

Forward Difference Quotient  

consider a small increment ∆𝑥 = ℎ in x, according to Taylor’s theorem, we have  

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) +
ℎ2

2
𝑓′′(𝜃)… (1)    𝑓𝑜𝑟 𝑥 +  𝜃 ≤ 𝑥 + ℎ  

by re-arranging the terms, we get 
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𝑓′(𝑥) =
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
−

ℎ2

2
𝑓′′(𝜃)… . (2)   

Thus if h is chosen to be sufficiently small , 𝑓′(𝑥) can be approximated by  

𝑓′(𝑥) =
𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
….(3) 

With a truncation error of  

𝐸𝑡(ℎ) = −
ℎ2

2
𝑓′′(𝜃)… . (4) 

Equation 3 is called first order forward difference quotient. This is also known as 

two-point formula. The truncation error is in the order of h and can be decreased 

by decreasing h. 

Similarly, we can show that the first order backward difference quotient is  

𝑓′(𝑥) =
𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ℎ
… (5) 

Central Difference Quotient 

 

𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 

This equation is called second order difference quotient. Note that this is the 

average of the forward difference quotient and backward difference equation. 

This is also called as three-point formula. 

Example: Estimate approximate derivative of 𝑓(𝑥) = 𝑥2 𝑎𝑡 𝑥 = 1, for 

h=0.2,0.1,0.05 and 0.01, using first order forward difference formula 

We know that  

𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

𝑓′(𝑥) =
𝑓(1 + ℎ) − 𝑓(𝑥)

ℎ
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Derivative approximation is tabulated below as: 

h 𝑓′(1) 

0.2 2.2 

0.1 2.1 

0.05 2.05 

0.01 2.01 

 

Note that the correct answer is 2. The derivative approximation approaches the 

exact value as h decreases. 

Now for central difference quotient  

  

𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 

𝑓′(𝑥) =
𝑓(1 + ℎ) − 𝑓(1 − ℎ)

2ℎ
 

h 𝑓′(1) 

0.2 2 

0.1 2 

0.05 2 

 

Example Practice: 

1. Find the first and second derivates of the function tabulated below at point 

x=19 

x 1.0 1.2 1.4 1.6 1.8 2.0 

f(x) 0 0.128 0.544 1.296 2.432 4.00 

 

Result :0.63,6.6 

 

2. The following data gives corresponding values of pressure and specific 

volume of super-heated steam. 

  

v 2 4 6 8 10 

P 105 42.07 25.3 16.7 13 

a. Find the rate of change of pressure with respect to volume when v=2 
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b. Find the rate of change of volume with respect to pressure when p=105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical Integration: 

The process of computing ∫ 𝑦
𝑏

𝑎
𝑑𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑦 = 𝑓(𝑥) is given by a set of tabulated 

values [𝑥𝑖 , 𝑦𝑖], i=0,1,2 ….n ,𝑎 = 𝑥0, 𝑏 = 𝑥𝑛 is called numerical integration since 

𝑦 = 𝑓(𝑥) is a single variable function, the process in general is known as 

quadrature, like that of numerical differentiation here also we replace f(X) by an 

interpolation formula and integrate it in between given limits. 

Newtons Cotes Formula: 

This is the most popular and widely used in numerical integration. Numerical 

integration method uses an interpolating polynomial 𝑝𝑛(𝑥) in place of f(x) 

Thus 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫  𝑝𝑛(𝑥)𝑑𝑥 …… (1)

𝑏

𝑎
 

We know, Newton’s interpolation formula as: 
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𝑓(𝑥) = 𝑓0 + 𝑝∆𝑓0 +
𝑝(𝑝 − 1)

2!
∆2𝑓0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
∆3𝑓0 + ⋯ 

Integrating term by term, since 𝑥 = 𝑥0 + 𝑝ℎ 

 𝑑𝑥 = ℎ𝑑𝑝 

𝐼 = ∫ [𝑓0 + 𝑝∆𝑓0 +
𝑝(𝑝 − 1)

2!
∆2𝑓0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
∆3𝑓0 + ⋯]ℎ𝑑𝑝

𝑛

0

 

𝐼 = ℎ [𝑛𝑓0 +
𝑛2

2
∆𝑓0 +

1

2!
(
𝑛3

3
−

𝑛2

2
)∆2𝑓0 +

1

3!
(
𝑛4

4
− 𝑛3 + 𝑛2)∆3𝑓0

+ ⋯]… . (1) 

Above equation is known as Newton’s Cote’s quadrature formula, used for 

numerical integration. 

If the limits of integration a and b are in the set of interpolating points 

xi=0,1,2,3…..n, then the formula is referred as closed form. If the points a and b 

lie beyond the set of interpolating points, then the formula is termed as open form. 

Since the open form formula is not used for definite integration, we consider here 

only the closed form methods. They include: 

1. Trapezoidal rule 

2. Simpson’s 1/3 rule 

3. Simpson’s 3/8 rule 

 

Trapezoidal rule (2 Point Formula) 

Putting n=1 in equation 1 and neglecting second and higher order differences we 

get 

∫ 𝑓(𝑥)𝑑𝑥 = ℎ [𝑓0 +
∆𝑓0
2

]
𝑥𝑛

𝑥0

 

𝐼 = ℎ [𝑓0 +
1

2
(𝑓1 − 𝑓0)] 

𝐼 =
ℎ

2
[𝑓0 + 𝑓1] 
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Composite Trapezoidal Rule: 

If the range to be integrated is large, the trapezoidal rule can be improved by 

dividing the interval (a,b) into a number of small intervals. The sum of areas of 

all the sub-intervals is the integral of the intervals (a,b) or (x0,xn). this is known 

as composite trapezoidal rule. 

 

As seen in the figure, there are n+1 equally spaced sampling point that create n 

segments of equal width h given by  

ℎ =
𝑏 − 𝑎

𝑛
 

𝑥𝑖 = 𝑎 + 𝑖ℎ       𝑖 = 0,1,2, …𝑛 

From the equation of trapezoidal rule, 

𝐼𝑖 = ∫ 𝑝1(𝑥)𝑑𝑥
𝑥𝑖

𝑥𝑖−1

=
ℎ

2
[𝑓(𝑥𝑖−1) − 𝑓(𝑥𝑖)] 

The total area of all the n segments is  

𝐼 = ∑
ℎ

2
[𝑓(𝑥𝑖−1) + 𝑓(𝑥𝑖)]

𝑛

𝑖=1

 

𝐼 =
ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)] +

ℎ

2
[𝑓(𝑥1) + 𝑓(𝑥2)] + ⋯+

ℎ

2
[𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)] 

Now let us denote 𝑓𝑖 = 𝑓(𝑥𝑖) then 

𝐼 =
ℎ

2
[𝑓0 + 2 ∑ 𝑓𝑖 + 𝑓𝑛

𝑛−1

𝑖=1

] 

Above equation is known as composite trapezoidal rule 
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Simpson’s 𝟏 𝟑⁄  rule ( 3 Point Formula) 

 

Another popular method is Simpson’s 1/3 rule. Here the function f(x) is 

approximated by second order polynomial 𝑝2(𝑥) which passes through three 

sampling points as shown in figure. The three points include the end point a & b 

and midpoint between 𝑥1 = (𝑎 + 𝑏)/2. The width of the segment h is given by 

ℎ =
(𝑏 − 𝑎)

𝑛⁄ . Take n=2 and neglecting the third and higher order differences 

we get (in newton’s cote formula) 

 𝐼 = ℎ [2𝑓0 +
22

2
∆𝑓0 +

1

2!
(
23

3
−

22

2
) ∆2𝑓0] 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

𝑎

ℎ [2𝑓0 + 2(𝑓1 − 𝑓0) +
1

2
(
8

3
− 2)(𝑓1 − 𝑓0)

2] 

= ℎ [2𝑓0 + 2𝑓1 − 2𝑓0 +
1

3
(∆𝑓2 − ∆𝑓1)] 

=
ℎ

3
[2𝑓0 + 2𝑓1 − 2𝑓0 +

1

3
(𝑓2 − 𝑓1 − (𝑓1−𝑓0))] 

=
ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2] 

Composite Simpson’s 1/3 rule: 

∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

𝑎

ℎ

3
[(𝑓0 + 𝑓𝑛) + 4(𝑓1 + 𝑓3 + 𝑓5 + ⋯) + 2(𝑓2 + 𝑓4 + 𝑓6 + ⋯)] 
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Simpson’s 3/8 rule ( 4 Point Rule) 

We have Newton’s cotes formula  

𝐼 = ℎ [𝑛𝑓0 +
𝑛2

2
∆𝑓0 +

1

2!
(
𝑛3

3
−

𝑛2

2
)∆2𝑓0 +

1

3!
(
𝑛4

4
− 𝑛3 + 𝑛2)∆3𝑓0 + ⋯] 

 

Putting n=3 and neglecting 4th terms in above formula 

𝐼 = ℎ [3𝑓0 +
32

2
∆𝑓0 +

1

2
(
33

3
−

32

2
)∆2𝑓0 +

1

6
(
34

4
− 33 + 32)∆3𝑓0 + ⋯] 

On solving we get 

𝐼 =
3ℎ

8
[(𝑓0 + 𝑓3) + 3𝑓1 + 3𝑓2] 

 

Adding all these integrals where n is a multiple of 3 we get 

∫𝑓(𝑥)𝑑𝑥 =
3ℎ

8
[(𝑓0 + 𝑓𝑛) + 3(𝑓1 + 𝑓2 + 𝑓4 + 𝑓5 + 𝑓7 + ⋯) + 2(𝑓3 + 𝑓6 + 𝑓9

+ ⋯)] 

 

This is composite Simpson’s 3/8 rule. 

Example: 

1. Evaluate ∫
𝑑𝑥

1+𝑥2

10

0
 using   

a. Trapezoidal rule 

b. Simpson’s 1/3 rule 

c. Simpson’s 3/8 rule 
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Solution:  

Taking h=1, divide the whole range of the integration [0,10] into ten equal parts. 

The value of the integrand for each point of sub division.  

𝑥𝑖

= 𝑥 

𝑥0

= 0 

1 2 3 4 5 6 7 8 9 10 

𝑓𝑖
= 𝑦 

1 0.

5 

0.

2 

0.

1 

0.058

8 

0.038

5 

0.027

0 

0.02

0 

0.015

4 

0.012

2 

0.009

9 

 

a. By Trapezoidal rule 

∫
𝑑𝑥

1 + 𝑥2

10

0

=
ℎ

2
[𝑓0 + 𝑓1] 

=
1

2
[1 + 0.5] 

= 0.75 

 

b. By Simpson’s 1/3 rule 

∫
𝑑𝑥

1 + 𝑥2

10

0

=
ℎ

3
[𝑓0 + 4𝑓1 + 𝑓2] 

=
1

3
[1 + 4 × 0.5 + 0.2] 

= 1.0667 

c. By Simpson’s 3/8 rule 

∫
𝑑𝑥

1 + 𝑥2

10

0

=
3ℎ

8
[(𝑓0 + 𝑓3) + 3𝑓1 + 3𝑓2]

=
3 × 1

8
[(1 + 0.1) + 3 × 0.5 + 3 × 0.2] 

=  1.2 

Composite methods: 

a. Trapezoidal rule 

∫
𝑑𝑥

1 + 𝑥2

10

0

=
ℎ

2
[𝑓0 + 2 ∑ 𝑓𝑖 + 𝑓𝑛

𝑛−1

𝑖=1

] 
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=
ℎ

2
[𝑓0 + 2∑𝑓𝑖 + 𝑓10

9

𝑖=1

] 

=
1

2
[1 + 2(0.5 + 0.2 + 0.1 + 0.0588 + 0.0385 + 0.0270 + 0.020

+ 0.0154 + 0.0122) + 0.0099] 

= 1.4769 

 

b. By Simpson’s 1/3 rule 

∫
𝑑𝑥

1 + 𝑥2

10

0

=
ℎ

3
[(𝑓0 + 𝑓10) + 4(𝑓1 + 𝑓3 + 𝑓5 + 𝑓7 + 𝑓9) + 2(𝑓2 + 𝑓4

+ 𝑓6 + 𝑓8)] 

                    =
1

3
[(1 + 0.0099)

+ 4(0.5 + 0.1 + 0.0385 + 0.020 + 0.0122)

+ 2(0.2 + 0.0588 + 0.0270 + 0.0154)] 

=
1

3
[1.0099 + 2.6828 + 0.6024] 

= 1.4317 

 

 

c. Simpson’s 3/8 rule 

∫
𝑑𝑥

1 + 𝑥2

10

0

=
3ℎ

8
[(𝑓0 + 𝑓10) + 3(𝑓1 + 𝑓2 + 𝑓4 + 𝑓5 + 𝑓7 + 𝑓8) + 2(𝑓3

+ 𝑓6 + 𝑓9)]

=
3

8
[(1 + 0.0099)

+ 3(0.5 + 0.2 + 0.0588 + 0.0385 + 0.020 + 0.0154)

+ 2(0.1 + 0.0270 + 0.0270 + 0.0122)] 

= 1.4199 

 



80 
 

 

 

Romberg integration formula/ Richardson’s deferred approach to the limit 

or Romberg method 

Take an arbitrary value of h and calculate  

𝐼1 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
ℎ

2
[(𝑓0 + 𝑓𝑛) + 2(𝑓1 + 𝑓2 + 𝑓3 + 𝑓𝑛−1)] 

𝐼2 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
ℎ

4
[(𝑓0 + 𝑓𝑛) + 2(𝑓1 + 𝑓2 + 𝑓3 + 𝑓𝑛−1)] 

𝐼3 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

=
ℎ

8
[(𝑓0 + 𝑓𝑛) + 2(𝑓1 + 𝑓2 + 𝑓3 + 𝑓𝑛−1)] 

Now better estimate of 𝐼1 & 𝐼2   can be found as  

𝐼1
∗ = 𝐼2 +

1

3
(𝐼2 − 𝐼1) 

𝐼2
∗ = 𝐼3 +

1

3
(𝐼3 − 𝐼2) 

If 𝐼1
∗ = 𝐼2

∗ then stop else continue as 𝐼1
∗∗ = 𝐼2

∗ +
1

3
(𝐼2

∗ − 𝐼1
∗) and so on  

Example: Evaluate ∫
𝑑𝑥

1+𝑥2

1

0
 using Romberg’s method correct up to four decimal 

places. Hence find approximate value of π. 

Solution  

By taking n=2, ℎ =
𝑏−𝑎

𝑛
=

1−0

2
= 0.5 

a. When h=0.5 

𝑥 0 0.5 1 

𝑓𝑖 1 0.8 0.5 

 

𝐼1 =
ℎ

2
[(𝑓0 + 𝑓2) + 2(𝑓1)] =

0.5

2
[(1 + 0.5) + 2(0.8)] = 0.7750 
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b. When h=0.5/2=0.25 

𝑥 0 0.25 0.5 0.75 1 

𝑓𝑖 1 0.9412 0.8 0.64 0.5 

𝐼2 =
ℎ

2
[(𝑓0 + 𝑓4) + 2(𝑓1 + 𝑓2 + 𝑓3)]

=
0.25

2
[(1 + 0.5) + 2(0.941 + 0.8 + 0.64)] = 0.7828 

c. When h=0.25/2=0.125 

𝑥 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 

𝑓𝑖 1 0.9846 0.9412 0.8767 0.8 0.7191 0.64 0.5664 0.5 

 

𝐼3 =
ℎ

2
[(𝑓0 + 𝑓8) + 2(𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓6 + 𝑓7)] 

=
0.125

2
[(1 + 0.5) + 2(0.9846 + 0.9412 + 0.8767 + 0.8 + 0.7191 + 0.64

+ 0.5664)] = 0.78475 

𝐼1
∗ = 𝐼2 +

1

3
(𝐼2 − 𝐼1) = 0.7828 +

1

3
(0.7828 − 0.7750) = 0.7854 

𝐼2
∗ = 𝐼3 +

1

3
(𝐼3 − 𝐼2) = 0.7848 +

1

3
(0.7848 − 0.7828) = 0.7854 

Since these two are the same value, we conclude that the value of the integral 

=0.7854 

i.e ∫
𝑑𝑥

1+𝑥2

1

0
= 0.7854 

∫
𝑑𝑥

1 + 𝑥2

1

0

= [tan−1 𝑥]0
1 = tan−1 1 − tan−1 0 =

𝜋

4
= 0.7854 

∴ 𝜋 ≈ 3.1416 
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Gaussian integration: 

Gaussian integration is based on the concept that the accuracy of numerical 

integration can be improved by choosing sampling points wisely rather than on 

the basis of equal sampling. The problem is to compute the values of 𝑥1& 𝑥2 given 

the value of a and b and to choose approximate weights w1 & w2 . The method of 

implementing the strategy of finding approximate values of xi & wi and obtaining 

the integral of f(x) is called Gaussian integration or quadrature. 

Gaussian integration assumes an approximation of the form  

𝐼𝑔 = ∫ 𝑓(𝑥)𝑑𝑥
1

−1

= ∑𝑤𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

… . (1) 

The above equation 1 contains 2n unknowns to be determined. For example for 

n=2, we need to find the values of w1,w2,x1,x2.  We assume that the integral will 

be exact up to cubic polynomial. This implies the function 1,x,x2&x3 can be 

numerically integrated to obtain exact results. 

Assume f(x)=1 (assume the integral is exact up to cubic polynomial) 

1. f(x)=1 

𝑤1 + 𝑤2 = ∫ 𝑑𝑥
1

−1

= 2 

2. f(x)=x 

w1x1 + w2x2 = ∫ f(x)dx
1

−1

= 0 

3. f(x)=x2 

w1𝑥1
2 + w2𝑥2

2 = ∫ f(x)dx
1

−1

= ∫ 𝑥2dx
1

−1

=
2

3
 

4. f(x)=x3 

w1𝑥1
3 + w2𝑥2

3 = ∫ f(x)dx
1

−1

= ∫ 𝑥3dx
1

−1

= 0 

Solving above equation we get 

𝑤1 = 1,𝑤2 = 1 
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𝑥1 = −1
√3

⁄ = −0.5773502 

𝑥2 = 1
√3

⁄ = 0.5773502 

Thus, we have the Gaussian Quadrature formula, for n=2 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑓(−1
√3

⁄ )
1

−1

+ 𝑓(1
√3

⁄ ) 

This formula will give correct value for the integral of f(x) in the range (-

1,1) for any function up to third order. The above equation is also called 

Gauss Legendre formula. 

 

Example : Compute ∫ 𝑒𝑥1

−1
 using two point Gaussian integration formula 

𝐼 = ∫ 𝑒𝑥𝑑𝑥
1

−1

= 𝑤1𝑓(𝑥1) + 𝑤2𝑓(𝑥2) 

Where x1 and x2 are Gaussian quadrature points and are given by   

𝑥1 = −1
√3

⁄ = −0.5773502, 𝑤1 = 1 

𝑥2 = 1
√3

⁄ = 0.5773502, 𝑤2 = 1 

𝑓(𝑥) = 𝑒𝑥 

we know that, 

𝐼 = 𝑤1𝑓 (−1
√3

⁄ ) + 𝑤2𝑓 (1
√3

⁄ ) 

= 𝑒
−1

√3
⁄

+ 𝑒
1

√3
⁄

 

 = 0.5614 + 1.7813 

= 2.3427 
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Changing limits of Integration 

Note that the Gaussian formula imposed a restriction on the limits of integration 

to be from -1 to 1. The restriction can be overcome by using the techniques of the 

“interval transformation” used in calculus, let 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝑐 ∫ 𝑔(𝑧)
1

−1

𝑑𝑧 

Assume the following transformation between x and new variable z. by following 

relation.  

i.e x=Az+B 

this must satisfy the following conditions at x=a, z=-1 & x=b, z=1  

i.e B-A=a, A+B=b 

𝐴 =
𝑏 − 𝑎

2
, 𝐵 =

𝑎 + 𝑏

2
  

 ∴  x = (
𝑏−𝑎

2
)z + (

𝑎+𝑏

2
) 

𝑑𝑥 = (
𝑏 − 𝑎

2
)𝑑𝑧 

here 𝐶 =
𝑏−𝑎

2
 

∴ the integral becomes 

𝑏 − 𝑎

2
∫ 𝑔(𝑧)𝑑𝑧

1

−1

 

The Gaussian formula for this integration is  

𝑏 − 𝑎

2
∫ 𝑔(𝑧)𝑑𝑧

1

−1

= (
𝑏 − 𝑎

2
)∑𝑤𝑖𝑔(𝑧𝑖)

𝑛

𝑖=1
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Where wi and zi are the weights and quadrature points for the integration domain 

(-1,1) 

Example: Compute the integral 

𝐼 = ∫ 𝑒−𝑥
2⁄

2

−2
 by using Gaussian two points formula  

Here n=2 

𝐼 =
𝑏−𝑎

2
∫ 𝑔(𝑧)𝑑𝑧 =

𝑏−𝑎

2
∑ 𝑤𝑖𝑔(𝑧𝑖) = (

𝑏−𝑎

2
) [𝑤1𝑔(𝑧1) + 𝑤2𝑔(𝑧2)]

𝑛
𝑖=1

1

−1
  

𝑥 = (
𝑏 − 𝑎

2
)𝑧 +

𝑏 + 𝑎

2
 

=
2 − (−2)

2
𝑧 +

2 + (−2)

2
 

= 2𝑧 

∴ 𝑔(𝑧) = 𝑒−𝑥
2⁄ = 𝑒−2𝑧

2⁄ = 𝑒−𝑧 

For two point formula : 

𝑤1 = 𝑤2 = 1 

𝑧1 = −1
√3

⁄  , 𝑧2 = 1
√3

⁄  

𝐼 =
𝑏 − 𝑎

2
[𝑤1𝑔(𝑧1) + 𝑤2𝑔(𝑧2)] 

=
2 − (−2)

2
[𝑒

−(−1
√3

⁄ )
+ 𝑒

−(1
√3

⁄ )
] 

= 2(0.5614 + 1.7813) 

= 4.8654 
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Values for gaussian quadrature 

Number of terms Values of x Weighting factor Valid to degree 

2 -0.5773502 1 3 

  0.5773502 1  

    

3 -0.77459667 0.55555555  

 0 0.88888889 5 

 0.77459667 0.55555555  

    

4 -0.86113631 0.34785485  

 -0.33998104 0.65214515 7 

  0.33998104 0.65214515  

  0.86113631 0.34785485  

 

Example: Use Gaussian integration 3 point formula to evaluate ∫ (𝑥4 + 1)𝑑𝑥
4

2
 

Given n=3, a=2, b=4 

𝐼 =
𝑏 − 𝑎

2
∑𝑤𝑖𝑔(𝑧𝑖)

3

𝑖=1

 

𝐼 =
𝑏 − 𝑎

2
[𝑤1𝑔(𝑧1) + 𝑤2𝑔(𝑧2) + 𝑤3𝑔(𝑧3)] 

𝑥 = (
𝑏 − 𝑎

2
)𝑧 + (

𝑎 + 𝑏

2
) 

= (
4 − 2

2
)𝑧 + (

4 + 2

2
) 

= 𝑧 + 3 

∴ 𝑔(𝑧) = (𝑧 + 3)4 + 1 

For n=3 

𝑤1 = 0.55556           𝑧1 = −0.77460  

𝑤2 = 0.88889           𝑧 2 = 0   

𝑤3 = 0.55556           𝑧3 = 0.77460  
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𝐼 = 0.55556[(−0.77460 + 3)4 + 1] + 0.88889[(0 + 3)4 + 1]

+ 0.55556[(0.77460 + 3)4 + 1] 

= 14.1814 + 72.8890 + 113.3310 

= 200.4014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

 

 

 

Chapter 4: solution of Linear Algebraic Equations 

 

 Linear equations: 

First mathematical models of many of the real world problems are either linear 

or can be approximated reasonably well using linear relationships. Analysis of 

linear relationship of variables is generally easier than that of non-linear 

relationships. 

A linear equation involving two variables x and y has the standard form 𝑎𝑥 +

𝑏𝑦 = 𝑐, where a, b& c are real numbers and a and b both cannot be equal to zero.  

The equation becomes non-linear if any of the variables has the exponent other 

than one, example 

4𝑥 + 5𝑦 = 15 𝑙𝑖𝑛𝑒𝑎𝑟 

4𝑥 − 𝑥𝑦 + 5𝑦 = 15  𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 

𝑥2 + 5𝑦2 = 15  𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 

Linear equation occurs in more than two variables as𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 +

⋯ 𝑎𝑛𝑥𝑛 = 𝑏. The set of equations is known as system of simultaneous equations, 

in matrix form it can be represented as 𝐴𝑥 = 𝐵 

3𝑥1 + 2𝑥2 + 4𝑥3 = 14 

𝑥1 − 2𝑥2 = −7 

−𝑥1 + 3𝑥2 + 2𝑥3 = 2 

[
3 2 4
1 −2 0

−1 3 2
] [

𝑥1

𝑥2

𝑥3

] = [
14
−7
2

] 
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Existence of solution 

In solving system of equations, we find values of variables that satisfy all 

equations in the system simultaneously. There may be 4 possibilities in solving 

the equations. 

1. System with unique solution 

here the lines or equations intersect in one and only one point. 

 

 

 

 

 

 

 

2. System with no solution  

Here the lines or equation never intersect or parallel lines. 

 

 

 

 

 

 

 

 

 

3. System with infinite solution  

Here two equation or lines overlap, so that there is infinite  

Solutions 

 

 

 

 

 

 

 

4. ILL conditioned system: 

There may be situation where the system has a solution but it is very close 

to being singular, i.e, any equation have solution but is very difficult to 
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identify the exact point at which the lines intersect. If there is any slight 

changes in the value in the equation then we will see huge change in the 

solution, this type of equation is called ILL condition system, we should 

be careful in solving these kind of solutions.  Example 

[
1.01 0.99
0.99 1.01

] [
𝑥
𝑦] = [

2.00
2.00

] 

1.01𝑥 + 0.99𝑦 = 2 

0.99𝑥 + 1.01𝑦 = 2 

On solving these equations, we get the solution at x=1 & y=1, however if 

we make small changes in b i.e.  

[
1.01 0.99
0.99 1.01

] [
𝑥
𝑦] = [

2.02
1.98

] 

 

1.01𝑥 + 0.99𝑦 = 2.02 

0.99𝑥 + 1.01𝑦 = 1.98 

On solving these equations, we get x=2 & y=0 

So slight changes results in huge change in solution. 

 

Methods of solutions (Direct Methods) 

Elimination method 

Elimination method is a method of solving simultaneous linear. This method 

involves elimination of a term containing one of the unknowns in all but one 

equation, one such step reduces the order of equations by one, repeated 

elimination leads finally to one equation with one unknown.  

Example: solve the following equation using elimination method 

4𝑥1 − 2𝑥2 + 𝑥3 = 15……(1) 

−3𝑥1 − 𝑥2+4𝑥3 = 8……(2) 

𝑥1 − 𝑥2 + 3𝑥3 = 13…… (3) 

Here multiply 𝑅1 𝑏𝑦 3 &𝑅2 𝑏𝑦 4 and add to eliminate 𝑥1from 2. Multiply 

𝑅1 𝑏𝑦 − 1&𝑅3 𝑏𝑦 4 and add to eliminate 𝑥1from 3 

4𝑥1 − 2𝑥2 + 𝑥3 = 15 

−10𝑥2+19𝑥3 = 77 
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−2𝑥2 + 11𝑥3 = 37 

Now to eliminate 𝑥2 from third equation multiply second row by 2 and third row 

by -10 and adding  

4𝑥1 − 2𝑥2 + 𝑥3 = 15 

−10𝑥2+19𝑥3 = 77 

−72𝑥3 = −216 

Now we have a triangular system and solution is readily obtained from back-

substitution 

 

𝑥3 = 3 

𝑥2 =
77 − 19 ∗ 3

−10
= −2 

𝑥1 =
15 + 2 ∗ (−2) − 3

4
= 2 

Gauss Elimination Method 

The procedure in above example may not be satisfactory for large systems 

because the transformed coefficients can become very large as we convert to a 

triangular system. So, we use another method called Gaussian Elimination 

method that avoid this by subtracting  
𝑎𝑖1

𝑎11
⁄ times the first equation from 

𝑖𝑡ℎequation to make the transformed numbers in the first column equal to zero 

and proceed on. 

However, we must always be cautious against divide by zero, a useful strategy to 

avoid divide by zero is to re-arrange the equations so as to put the coefficient of 

large magnitude on the diagonal at each step, this is called pivoting. Complete 

pivoting method require both row and column interchange but this is much 

difficult and not frequently done. Changing only row called partial pivoting 

which places a coefficient of larger magnitude on the diagonal by row interchange 

only. This will be guaranteeing a non-zero divisors if there is a solution to set of 

equations and will have the added advantage of giving improved arithmetic 

precision. The diagonal elements that result are called pivot elements. 
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Example (without pivoting element) 

0.143𝑥1 + 0.357𝑥2 + 2.01𝑥3 = −5.173 

−1.31𝑥1 + 0.911𝑥2 + 1.99𝑥3 = −5.458 

11.2𝑥1 − 4.30𝑥2 − 0.605𝑥3 = 4.415 

Augmented matrix is   

[
0.143 0.357 2.01 −5.173
−1.31 0.911 1.99 −5.458
11.2 −4.30 −0.605 4.415

] 

𝑅2 → (
𝑅1

0.143⁄ ) 1.31 + 𝑅2 , 𝑅3 → (
𝑅1

0.143⁄ ) ∗ (−11.2) + 𝑅3 

[
0.143 0.357 2.01 −5.173

0 4.181 20.403 −52.847
0 −32.261 −158.032 409.573

] 

𝑅3 → (
𝑅2

4.181⁄ ) 32.261 + 𝑅2  

[
0.143 0.357 2.01 −5.173

0 4.181 20.403 −52.847
0 0 −0.6 1.8

] 

𝑥3 = 1.8
−0.6⁄ = −3.001 

4.181𝑥2 + 20.403𝑥3 = −52.847 

𝑥2 =
−52.847 − 20.403 ∗ −3.001

4.181
= 2.005 

0.143𝑥1 + 0.357𝑥2 + 2.01𝑥3 = −5.173 

𝑥1 =
−5.173 − 0.357𝑥2 − 2.01𝑥3

0.143
 

𝑥1 =
−5.173 − 0.35 ∗ 2.005 − 2.01 − 3.001

0.143
 

𝑥1 = 0.749 
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Example (with pivoting element) 

0.143𝑥1 + 0.357𝑥2 + 2.01𝑥3 = −5.173 

−1.31𝑥1 + 0.911𝑥2 + 1.99𝑥3 = −5.458 

11.2𝑥1 − 4.30𝑥2 − 0.605𝑥3 = 4.415 

Augmented matrix is  

[
0.143 0.357 2.01 −5.173
−1.31 0.911 1.99 −5.458
11.2 −4.30 −0.605 4.415

] 

𝑅1 ↔ 𝑅3(𝑃𝑖𝑣𝑜𝑡𝑖𝑛𝑔) 

[
11.2 −4.30 −0.605 4.415

−1.31 0.911 1.99 −5.458
0.143 0.357 2.01 −5.173

] 

𝑅2 → (
𝑅1

11.2⁄ ) 1.31 + 𝑅2 , 𝑅3 → (
𝑅1

11.2⁄ ) ∗ (−0.143) + 𝑅3 

[
11.2 −4.30 −0.605 4.415
0 0.408 1.919 −4.942
0 0.412 2.018 −5.229

] 

𝑅2 ↔ 𝑅3 

[
11.2 −4.30 −0.605 4.415
0 0.412 2.018 −5.229
0 0.408 1.919 −4.942

] 

𝑅3 → (
𝑅2

0.412⁄ ) ∗ (−0.408) + 𝑅3 

11.2 −4.30 −0.605 4.415
0 0.412 2.018 −5.229
0 0 −0.079 0.236

 

𝑥3 = 0.236
−0.079⁄ = −2.990 

0.412𝑥2 + 2.018𝑥3 = −5.229 

𝑥2 =
−5.229 − 2.018 ∗ −2.990

0.412
= 1.953 

11.2𝑥1 − 4.30𝑥2 − 0.605𝑥3 = 4.415 



94 
 

𝑥1 =
4.415 + 4.30 ∗ 1.953 + 0.605 ∗ −2.990

11.2
 

𝑥1 = 0.982 

Hence 𝑥1 = 2, 𝑥2 = 1.953, 𝑥3 = −2.990 

Practice: Solve the following system of equations(without pivoting) 

1. 3𝑥1 + 6𝑥2 + 𝑥3 = 16,     2𝑥1 + 4𝑥2 + 3𝑥3 = 13,    𝑥1 + 3𝑥2 + 2𝑥3 = 9 

2. 2𝑥1 + 3𝑥2 + 4𝑥3 = 5,     3𝑥1 + 4𝑥2 + 5𝑥3 = 6,   4 𝑥1 + 5𝑥2 + 6𝑥3 = 7 

3. Solve above equations again using pivoting techniques.   

 

Gauss Jordan Method 

Gauss Jordan method is another popular method used for solving a system of 

linear equations. In this method the elements above the diagonal are made zero at 

the same time that zero are created below the diagonal, usually the diagonal 

elements are made ones at the same time the reduction is performed, this 

transforms the coefficient matrix into identity matrix. When this has been 

accomplished the column of right-hand side has been transformed into the 

solution vector. Pivoting is normally employed to preserve arithmetic accuracy. 

Example solution using Gauss-Jordan method  

2𝑥1 + 4𝑥2 − 6𝑥3 = −8 

𝑥1 + 3𝑥2 + 𝑥3 = 10 

2𝑥1 − 4𝑥2 − 2𝑥3 = −12 

Augmented matrix is   

[
2 4 −6 −8
1 3 1 10
2 −4 −2 −12

] 

𝑅1 → (
𝑅1

2⁄ ) 

[
1 2 −3 −4
1 3 1 10
2 −4 −2 −12

] 

𝑅2 → 𝑅1 − 𝑅2 , 𝑅3 → −2𝑅1 + 𝑅3 
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[
1 2 −3 −4
0 −1 −4 −14
0 −8 4 −4

] 

𝑅2 → (
𝑅2

−1⁄ ) 

1 2 −3 −4
0 1 4 14
0 −8 4 −4

 

𝑅1 → −2𝑅2 + 𝑅1 , 𝑅3 → 8𝑅2 + 𝑅3 

 

1 0 −11 −32
0 1 4 14
0 0 36 108

 

𝑅3 → (
𝑅3

36⁄ ) 

  

1 0 −11 −32
0 1 4 14
0 0 1 3

 

𝑅1 → 11𝑅3 + 𝑅1 , 𝑅2 → −4𝑅3 + 𝑅2 

 

1 0 0 1
0 1 0 2
0 0 1 3

 

Hence 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3 

Example Solution using Gauss-Jordan method (with pivoting)   

2𝑥1 + 4𝑥2 − 6𝑥3 = −8 

𝑥1 + 3𝑥2 + 𝑥3 = 10 

2𝑥1 − 4𝑥2 − 2𝑥3 = −12 
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Augmented matrix is:   

[
2 4 −6 −8
1 3 1 10
2 −4 −2 −12

] 

𝑅1 → (
𝑅1

2⁄ ) 

[
1 2 −3 −4
1 3 1 10
2 −4 −2 −12

] 

𝑅2 → 𝑅1 − 𝑅2 , 𝑅3 → −2𝑅1 + 𝑅3 

[
1 2 −3 −4
0 −1 −4 −14
0 −8 4 −4

] 

 

𝑅2 ↔ 𝑅3 

1 2 −3 −4
0 −8 4 −4
0 1 4 −14

 

 

𝑅2 → (
𝑅2

−8⁄ ) 

1 2 −3 −4
0 1 −0.5 0.5
0 1 4 14

 

𝑅1 → −2𝑅2 + 𝑅1 , 𝑅3 → −𝑅2 + 𝑅3 

1 0 −2 −5
0 1 −0.5 0.5
0 0 4.5 13.5

 

𝑅3 → (
𝑅3

4.5
⁄ ) 

1 0 −2 −5
0 1 −0.5 0.5
0 0 1 3
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𝑅1 → 2𝑅3 + 𝑅1 , 𝑅2 → 0.5𝑅3 + 𝑅2 

1 0 0 1
0 1 0 2
0 0 1 3

 

Hence 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3 

Practice: Solve the following system of equations using GJ elimination 

method. 

1. 𝑥1 + 2𝑥2 − 3𝑥3 = 4,     2𝑥1 + 4𝑥2 − 6𝑥3 = 8,    𝑥1 − 2𝑥2 + 5𝑥3 = 4 

2. 2𝑥1 + 𝑥2 + 𝑥3 = 7,    4𝑥1 + 2𝑥2 + 3𝑥3 = 4,   𝑥1 − 𝑥2 + 𝑥3 = 0 

The inverse of a matrix 

The division a matrix is not defined but the equivalent is obtained from the inverse 

of the matrix. If the product of two square matrices A*B equals identity matrix I, 

B is said to be inverse of A (also A is inverse of B). the usual notation of the 

matrix is 𝐴−1 . we can say as 𝐴𝐵 = 𝐼, 𝐴 = 𝐵−1, 𝐵 = 𝐴−1. 

Example: Given matrix A, find the inverse of A using Gauss Jordan method. 

𝐴 = [
1 −1 2
3 0 1
1 0 2

] 

The augmented matrix with identity matrix is [
1 −1 2 1 0 0
3 0 1 0 1 0
1 0 2 0 0 1

] 

𝑅2 → −3𝑅1 + 𝑅2 , 𝑅3 → −𝑅1 + 𝑅3 

[
1 −1 2 1 0 0
0 3 −5 −3 1 0
0 1 0 −1 0 1

] 

𝑅2 → (
𝑅2

3⁄ ) 

[
1 −1 2 1 0 0
0 1 −1.6667 −1 0.333 0
0 1 0 −1 0 1

] 

𝑅1 → 𝑅1 + 𝑅2 , 𝑅3 → 𝑅2 − 𝑅3 
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[
1 0 0.3333 0 0.3333 0
0 1 −1.6667 −1 0.3333 0
0 0 −1.6667 0 0.3333 −1

] 

𝑅3 → (
𝑅3

−1.6667⁄ ) 

[
1 0 0.3333 0 0.3333 0
0 1 −1.6667 −1 0.333 0
0 0 1 0 −0.2 0.6

] 

𝑅1 → −0.3333𝑅3 + 𝑅1 , 𝑅2 → 1.6667𝑅3 + 𝑅2 

[
1 0 0 0 0.4 −0.2
0 1 0 −1 0 1
0 0 1 0 −0.2 0.6

] 

𝐴−1 = [
0 0.4 −0.2

−1 0 1
0 −0.2 0.6

] 

 

Practice:  Find the inverse of the following matrix using Gauss Jordan 

elimination method. 

𝐴 = [
2 3 4
4 2 3
3 4 2

] 

 

Method of factorization 

Consider the following system of equations  

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2 

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3 

These equations can be written in matrix form as: 

𝐴𝑋 = 𝐵 

𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 𝑋 = [

𝑥1

𝑥2

𝑥3

] 𝐵 = [

𝑏1

𝑏2

𝑏3

] 
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In this method, we use the fact that the square matrix A can be factorized into the 

form LU, where L is lower triangular matrix and U can be upper triangular matrix 

such that 𝐴 = 𝐿𝑈 

𝐿 = [

𝑙11 0 0
𝑙21 𝑙22 0
𝑙31 𝑙32 𝑙33

]     𝑈 = [

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

] 

 

 𝐿𝑈𝑋 = 𝐵 

Let us assume 𝑈𝑋 = 𝑍 , then 𝐿𝑍 = 𝐵 

Now we can solve the system A𝑋 = 𝐵 in two stages 

1. Solve the equation, 𝐿𝑍 = 𝐵 for Z by forward substitution  

2. Solve the equation, 𝑈𝑋 = 𝑍  for X using Z by backward substitution. 

The elements of L and U can be determined by comparing the elements of the 

product of L and U with those of A. The decomposition with L having unit 

diagonal values is called the Dolittle LU decomposition while the other one with 

U having unit diagonal elements is called Crout’s  LU decomposition.  

Dolittle LU decomposition: 

[

1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

] [

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

[

𝑢11 𝑢12 𝑢13

𝑙21𝑢11 𝑙21𝑢12 + 𝑢22 𝑙21𝑢13 + 𝑢23

𝑙31𝑢11 𝑙31𝑢12 + 𝑙32𝑢22 𝑙31𝑢13 + 𝑙32𝑢23 + 𝑢33

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

Equating the corresponding coefficients, we get the values of L and U 

Example:  Find L & U by using Doolittle algorithm. 

2𝑥 − 3𝑦 + 10𝑧 = 3 

−𝑥 + 4𝑦 + 2𝑧 = 20 

5𝑥 + 2𝑦 + 𝑧 = −12 

The given system is 𝐴𝑥 = 𝐵,  

mrdah
Highlight
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Where, 

𝐴 = [
2 −3 10

−1 4 2
5 2 1

]𝑋 = [
𝑥
𝑦
𝑧
] 𝐵 = [

3
20

−12
] here, A=LU 

[

1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

] [

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33

] = [
2 −3 10

−1 4 2
5 2 1

] 

[

𝑢11 𝑢12 𝑢13

𝑙21𝑢11 𝑙21𝑢12 + 𝑢22 𝑙21𝑢13 + 𝑢23

𝑙31𝑢11 𝑙31𝑢12 + 𝑙32𝑢22 𝑙31𝑢13 + 𝑙32𝑢23 + 𝑢33

] = [
2 −3 10

−1 4 2
5 2 1

] 

 

Now comparing both sides we get,  

𝑢11 = 2 , 𝑢12 = −3, 𝑢13 = 10 

𝑙21𝑢11 = −1 

𝑙21 = −1
2⁄  

𝑙21𝑢12 + 𝑢22 = 4 

𝑢22 = 5
2⁄  

𝑙21𝑢13 + 𝑢23 = 2 

𝑢23 = 7 

𝑙31𝑢11 = 5 

𝑙31 = 5
2⁄  

𝑙31𝑢12 + 𝑙32𝑢22 = 2 

𝑙32 = 19
5⁄  

𝑙31𝑢13 + 𝑙32𝑢23 + 𝑢33 = 1 

𝑢33 = −253
5⁄  

So, we have, 



101 
 

𝐿 = [

1 0 0

−1
2⁄ 1 0

5
2⁄

19
5⁄ 1

]     𝑈 = [

2 −3 10

0 5
2⁄ 7

0 0 −253
5⁄

] 

Now 𝐿𝑍 = 𝐵 where Z is the matrix of order 3×3. 

[

1 0 0

−1
2⁄ 1 0

5
2⁄

19
5⁄ 1

] [
𝑍1

𝑍2
𝑍3

] = [
3
20

−12
] 

𝑍1 = 3 

−1
2⁄ 𝑍1 + 𝑍2 = 20 

𝑍2 = 43
2⁄  

5
2⁄ 𝑍1 + 19

5⁄ 𝑍2 + 𝑍3 = −12 

𝑍3 = −506
5⁄  

Now UX= 𝑍 

[

2 −3 10

0 5
2⁄ 7

0 0 −254
5⁄

] [
𝑥
𝑦
𝑧
] = [

3
43

2⁄

−506
5⁄

] 

𝑧 = 2 

5
2⁄ 𝑦 + 7𝑧 = 43

2⁄  

𝑦 = 3 

2𝑥 − 3𝑦 + 10𝑧 = 3 

𝑥 = −4 

Practice: Solve the following system of equations by factorization using Doolittle 

method. 
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𝑥 + 3𝑦 + 8𝑧 = 4 

𝑥 + 4𝑦 + 3𝑧 = −2 

𝑥 + 3𝑦 + 4𝑧 = 1 

Note: the process of solution by using method of factorization can be 

repeatedly applied to solve the equation multiple times for different B. in this 

case it is faster to do an LU decomposition of the matrix A once and then 

solve the triangular matrices for different B, rather than using Gaussian 

elimination each time. 

Crout’s method 

[

𝑙11 0 0
𝑙21 𝑙22 0
𝑙31 𝑙32 𝑙33

] [
1 𝑢12 𝑢13

0 1 𝑢23

0 0 1

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

[

𝑙11 𝑙11𝑢12 𝑙11𝑢13

𝑙21 𝑙21𝑢12 + 𝑙22 𝑙21𝑢13 + 𝑙22𝑢23

𝑙31 𝑙31𝑢12 + 𝑙32 𝑙31𝑢13 + 𝑙32𝑢23 + 𝑙33

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

Equating the corresponding coefficients, we get the values of l and u 

Example Solve the following system by the method of Crout’s factorization 

method. 

2𝑥 − 3𝑦 + 10𝑧 = 3 

−𝑥 + 4𝑦 + 2𝑧 = 20 

5𝑥 + 2𝑦 + 𝑧 = −12 

The given system is 𝐴𝑥 = 𝐵, where 

𝐴 = [
2 −3 10

−1 4 2
5 2 1

]𝑋 = [
𝑥
𝑦
𝑧
] 𝐵 = [

3
20

−12
] here A=LU 

[

𝑙11 0 0
𝑙21 𝑙22 0
𝑙31 𝑙32 𝑙33

] [
1 𝑢12 𝑢13

0 1 𝑢23

0 0 1

] = [
2 −3 10

−1 4 2
5 2 1

] 

Now comparing, we get, 

𝑙11 = 2 , 𝑙21 = −1, 𝑙13 = 5 
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𝑙11𝑢12 = −3 

𝑢12 = −3
2⁄  

 

𝑙11𝑢13 = 10 

𝑢13 = 10
2⁄ = 5 

𝑙21𝑢12 + 𝑙22 = 4 

𝑙22 = 5
2⁄  

𝑙21𝑢13 + 𝑙22𝑢23 = 2 

𝑢23 = 14
5⁄  

𝑙31𝑢12 + 𝑙32 = 2 

𝑙32 = 19
2⁄  

 

 

𝑙31𝑢13 + 𝑙32𝑢23 + 𝑙33 = 1 

𝑙33 = −253
5⁄  

So, we have, 

𝐿 = [

2 0 0

−1 5
2⁄ 0

5 19
5⁄ −253

5⁄

]     𝑈 = [

1 −3
2⁄ 5

0 1 14
5⁄

0 0 1

] 

Now 𝐿𝑧 = 𝐵 

[

2 0 0

−1 5
2⁄ 0

5 19
5⁄ −253

5⁄

] [

𝑧1

𝑧2

𝑧3

] = [
3
20

−12
] 

𝑍1 = 3
2⁄  
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−𝑍1 +
5

2
𝑍2 = 20 

𝑍2 = 43
2⁄  

5𝑍1 + 19
2⁄ 𝑍2 −

253

5
𝑍3 = −12 

𝑍3 = 2 

 

Now UX= 𝑍 

[

1 −3
2⁄ 5

0 1 14
5⁄

0 0 1

] [
𝑥
𝑦
𝑧
] = [

3
2⁄

43
5⁄

2

] 

𝑧 = 2 

𝑦 +
14

5
𝑧 = 43

5⁄  

𝑦 = 3 

𝑥 −
3

2
𝑦 + 5𝑧 =

3

2
 

𝑥 = −4 

𝑥 = −4, 𝑦 = 3, 𝑧 = 2 

Practice: Solve the following system using Doolittle and Crout’s 

decomposition methods. 

1. 𝑥1 + 2𝑥2 − 3𝑥3 = 4,     2𝑥1 + 4𝑥2 − 6𝑥3 = 8,    𝑥1 − 2𝑥2 + 5𝑥3 = 4 

2. 2𝑥1 + 𝑥2 + 𝑥3 = 7,    4𝑥1 + 2𝑥2 + 3𝑥3 = 4,   𝑥1 − 𝑥2 + 𝑥3 = 0 

 

Choleskys method: 

In case of A is symmetric, the LU decomposition can be modified so that upper 

factor in matrix is the transpose of the lower one (vice versa) 

i.e. 
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𝐴 = 𝐿𝐿𝑇 = 𝑈𝑇𝑈 

[

𝑙11 0 0
𝑙21 𝑙22 0
𝑙31 𝑙32 𝑙33

] [

𝑙11 𝑙21 𝑙31

0 𝑙22 𝑙32

0 0 𝑙33

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

Just as other method, perform as before.  

Symmetric matrix 

A square matrix 𝑨 = [𝒂𝒊𝒋] is called symmetric if 𝒂𝒊𝒋 = 𝒂𝒋𝒊 for all i and j 

 

Example: Factorize the matrix, using Cholesky algorithm 

[
1 2 3
2 8 22
3 22 82

] 

Now decomposition becomes, 

[

𝑙11 0 0
𝑙21 𝑙22 0
𝑙31 𝑙32 𝑙33

] [

𝑙11 𝑙21 𝑙31

0 𝑙22 𝑙32

0 0 𝑙33

] = [
1 2 3
2 8 22
3 22 82

] 

Equating, we get: 

𝑙11
2 = 1, 𝑙11 = 1  

𝑙11𝑙21 = 2, 𝑙21 = 2 

𝑙11𝑙31 = 3, 𝑙31 = 3 

𝑙21𝑙21 + 𝑙22𝑙22 = 8 ,𝑙22 = 2 

𝑙31
2 + 𝑙32

2 + 𝑙33
2 = 82 ,𝑙33 = 3 

𝐿 = [
1 0 0
2 2 0
3 8 3

] 
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Practice: Find the Cholesky decomposition of the matrix 

𝐴 = [
4 1 1
1 5 2
1 2 3

] 

 

Iterative methods (Indirect Methods) 

Gauss elimination and its derivatives are called direct method, an entirely 

different way to solve many systems is through iteration. In this we start with an 

initial estimate of the solution vector and proceed to refine this estimate.  

When the system of equation can be ordered so that each diagonal entry of the 

coefficient matrix is larger in magnitude that the sum of the magnitude of the 

other coefficients in that row, then such system is called diagonally dominant and 

the iteration will converge for any stating values. Formally we say that an nxn 

matrix A is diagonally dominant if and only if for each i=1, 2, 3….n 

|𝑎𝑖𝑖| > ∑|𝑎𝑖𝑗| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

𝑗≠𝑖

 

The iterative method depends on the arrangement of the equations in this manner 

Let us consider a system of n equations in n unknowns  

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2 

 

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛 

We write the original system as 

𝑥1 =
𝑏1 − (𝑎12𝑥2 + 𝑎13𝑥3 + ⋯+ 𝑎1𝑛𝑥𝑛)

𝑎11
 

𝑥2 =
𝑏2 − (𝑎21𝑥1 + 𝑎23𝑥3 + ⋯+ 𝑎2𝑛𝑥𝑛)

𝑎22
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𝑥𝑛 =
𝑏𝑛 − (𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛−1𝑥𝑛)

𝑎𝑛𝑛
 

Now we can computer 𝑥1, 𝑥2 …𝑥𝑛 by using initial guess for these values. The 

new values area gain used to compute the next set of x values. The process can 

continue till we obtain a desired level of accuracy in x values. 

1.Gauss Jacobi Iteration method: 

Example:  

Solve the equation using Gauss Jacobi iteration method   

6𝑥1 − 2𝑥2 + 𝑥3 = 11 

𝑥1 + 2𝑥2 − 5𝑥3 = −1 

−2𝑥1 + 7𝑥2 + 2𝑥3 = 5 

Now, first we recorder the equation so that coefficient matrix is diagonally 

dominant  

6𝑥1 − 2𝑥2 + 𝑥3 = 11 

−2𝑥1 + 7𝑥2 + 2𝑥3 = 5 

𝑥1 + 2𝑥2 − 5𝑥3 = −1 

Now,  

𝑥1 =
11 − (−2𝑥2 + 𝑥3)

6
 

𝑥2 =
5 − (−2𝑥1 + 2𝑥3)

7
 

𝑥3 = −(
−1 − (𝑥1 + 2𝑥2)

5
) 

We can simplify as:  

𝑥1 =
11

6
+

2

6
𝑥2 −

1

6
𝑥3 

𝑥2 =
5

7
+

2

7
𝑥1 −

2

7
𝑥3 

mrdah
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𝑥3 =
1

5
+

1

5
𝑥2 +

2

5
𝑥3 

We begin with some initial approximation to the value of the variables, let’s take 

as:  

𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0, 

Then new approximation using above formula will be as follows  

𝑥1=1.833333 

𝑥2=0.714286 

𝑥3=0.200000 

  

2 Iteration 

𝑥1=2.038095 

𝑥2 =1.180952 

𝑥3=0.852381 

  

3 Iteration 

𝑥1=2.084921 

𝑥2=1.053061 

𝑥3=1.080000 

  

4 Iteration 

𝑥1=2.004354 

𝑥2=1.001406 

𝑥3=1.038209 

  

5 Iteration 

𝑥1=1.994100 

𝑥2=0.990327 

𝑥3=1.001433 

  

6 Iteration 

𝑥1=1.996537 

𝑥2=0.997905 

𝑥3=0.994951 

  

7 Iteration 

𝑥1=2.000143 

𝑥2=1.000453 
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𝑥3=0.998469 

  

8Iteration 

𝑥1=2.000406 

𝑥2=1.000478 

𝑥3=1.000210 

  

9 Iteration 

𝑥1=2.000124 

𝑥2=1.000056 

𝑥3=1.000273 

  

10 Iteration 

𝑥1=1.999973 

𝑥2=0.999958 

𝑥3=1.000047 

  

11 Iteration 

𝑥1=1.999978 

𝑥2=0.999979 

𝑥3=0.999978 

  

12 Iteration 

𝑥1=1.999997 

𝑥2=1.000000 

𝑥3=0.999987 

  

12 Iteration 

 the final 

result is : 

  

𝑥1=1.999997 

𝑥2=1.000000 

𝑥3=0.999987 

 

Practice: Solve the equation using Gauss Jacobi Iteration method. 

10𝑥1 − 2𝑥2 − 𝑥3−𝑥4 = 11 

−2𝑥1 + 10𝑥2 − 𝑥3−𝑥4 = 15 
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−𝑥1 − 𝑥2 + 10𝑥3 − 2𝑥4 = 27 

−𝑥1 − 𝑥2 − 2𝑥3 + 10𝑥4 = −9 

result 

𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3, 𝑥4 = 0, 

 

 

 

2.Gauss Seidel Iteration method 

This is simple modification of Gauss Jacobi method, as before   

Let us consider a system of n equations in n unknowns  

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2 

 

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛 

We write the original system as: 

𝑥1 =
𝑏1 − (𝑎12𝑥2 + 𝑎13𝑥3 + ⋯+ 𝑎1𝑛𝑥𝑛)

𝑎11
 

𝑥2 =
𝑏2 − (𝑎21𝑥1 + 𝑎23𝑥3 + ⋯+ 𝑎2𝑛𝑥𝑛)

𝑎22
 

 

 

𝑥𝑛 =
𝑏𝑛 − (𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛−1𝑥𝑛)

𝑎𝑛𝑛
 

Now, we can compute: 𝑥1, 𝑥2 …𝑥𝑛 by using initial guess for these values. Here 

we use the updated values of 𝑥1, 𝑥2 …𝑥𝑛 in calculating new values of x in each 

iteration till we obtain a desired level of accuracy in x values. This method is 
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more rapid in convergence than gauss Jacobi method. The rate of convergence of 

gauss seidel method is roughly twice that of gauss Jacobi. 

 

Example  

Solve the equation using Gauss Seidel iteration method .  

8𝑥1 − 3𝑥2 + 2𝑥3 = 20 

6𝑥1 + 3𝑥2 + 12𝑥3 = 35 

4𝑥1 + 11𝑥2 − 𝑥3 = 33 

Now, first we know the equation so that coefficient matrix is diagonally dominant  

8𝑥1 − 3𝑥2 + 2𝑥3 = 20 

4𝑥1 + 11𝑥2 − 𝑥3 = 33 

6𝑥1 + 3𝑥2 + 12𝑥3 = 35 

Now  

𝑥1 =
20 + 3𝑥2 − 2𝑥3

8
 

𝑥2 =
33 − 4𝑥1 + 𝑥3

11
 

𝑥3 =
35 − 6𝑥1 − 3𝑥2

12
 

We begin with some initial approximation to the value of the variables, let’s take 

as:  

𝑥2 = 0, 𝑥3 = 0, 

Then new approximation using above formula will be as follows  

𝑥1 =
20 + 3 ∗ 0 − 2 ∗ 0

8
= 2.5 

𝑥2 =
33 − 4 ∗ 2.5 + 0

11
= 2.0909 
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𝑥3 =
35 − 6 ∗ 2.5 − 3 ∗ 2.0909

12
= 1.1439 

 

2 iteration  

𝑥1 =
20 + 3 ∗ 2.0909 − 2 ∗ 1.1439

8
= 2.9981 

𝑥2 =
33 − 4 ∗ 2.9981 + 1.1439

11
= 2.0138 

𝑥3 =
35 − 6 ∗ 2.9981 − 3 ∗ 1.7018

12
= 0.9142 

 

3 iteration  

𝑥1 =
20 + 3 ∗ 2.0138 − 2 ∗ 0.9142

8
= 3.0266 

𝑥2 =
33 − 4 ∗ 3.0266 + 0.9142

11
= 1.9825 

𝑥3 =
35 − 6 ∗ 3.0266 − 3 ∗ 1.9825

12
= 0.9077 

 

4 iteration  

𝑥1 =
20 + 3 ∗ 1.9825 − 2 ∗ 0.9077

8
= 3.0165 

𝑥2 =
33 − 4 ∗ 3.0165 + 0.9077

11
= 1.9856 

𝑥3 =
35 − 6 ∗ 3.0165 − 3 ∗ 1.9856

12
= 0.9120 
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5 iteration  

𝑥1 =
20 + 3 ∗ 1.9856 − 2 ∗ 0.9120

8
= 3.0166 

𝑥2 =
33 − 4 ∗ 3.0166 + 0.9120

11
= 1.9860 

𝑥3 =
35 − 6 ∗ 3.0166 − 3 ∗ 1.9860

12
= 0.9119 

 

 

 

6 iteration  

𝑥1 =
20 + 3 ∗ 1.9860 − 2 ∗ 0.9119

8
= 3.0168 

𝑥2 =
33 − 4 ∗ 3.0168 + 0.9119

11
= 1.9859 

𝑥3 =
35 − 6 ∗ 3.0168 − 3 ∗ 1.9859

12
= 0.9118 

 

7 iteration  

𝑥1 =
20 + 3 ∗ 1.9859 − 2 ∗ 0.9118

8
= 3.0168 

𝑥2 =
33 − 4 ∗ 3.0168 + 0.9118

11
= 1.9859 

𝑥3 =
35 − 6 ∗ 3.0168 − 3 ∗ 1.9859

12
= 0.9118 

 

 

Since the 6th and 7th approximate are almost same up to 4 decimal places, we can 

say the solution vector is : 
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𝑥1 = 3.0168, 𝑥2 = 1.9859, 𝑥3 = 0.9118 

 

Practice: 

Solve the equation using Gauss Seidel iteration method   

2𝑥1 + 𝑥2 + 𝑥3 = 5 

3𝑥1 + 5𝑥2 + 2𝑥3 = 15 

2𝑥1 + 𝑥2 + 4𝑥3 = 8 

Practice: Solve the following systems using Jacobi and Gauss Seidel method  

1. 3𝑥1 − 2𝑥2 = 5,   − 𝑥1 + 2𝑥2 − 𝑥3 = 0,−2𝑥2 + 𝑥3 = −1 

2. 2𝑥1 − 7𝑥2 − 10𝑥3 = −17,    5𝑥1 + 𝑥2 + 3𝑥3 = 14,   𝑥1 + 10𝑥2 + 9𝑥3 =

7 

3.Relaxation Iterative method:  

 Solve the following system of equations by relaxation method: 

10𝑥 − 2𝑦 + 𝑧 = 12 

𝑥 + 9𝑦 − 𝑧 = 10 

2𝑥 − 𝑦 + 11𝑧 = 20 

 

Now obtaining residues: 

  12 −  10𝑥 + 2𝑦 − 𝑧 =R1 

10 − 𝑥 − 9𝑦 + 𝑧 = R2 

20 − 2𝑥 + 𝑦 − 11𝑧 =R3 
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Now, the increments in x, y, z are dx, dy, dz so, dx= -R1/-10 , dy = -R2/-9 and 

dz = -R3/-11 

 

 

Iterative Table: 

 

 

i x y z R1 R2 R3 Incrmnts. 

1 0 0 0 12 10 20 dz=-20/-11=1.8182 

2 0 0 1.8182 10.1818 11.8182 -0.0002 dy=-11.8182/-9=1.3131 

3 0 1.3131 1.8182 12.8080 0.0003 0.0003 dx=-12.8080/-10=1.2808 

4 1.2808 1.3131 1.8182 0 -1.2805 -1.2487 dy=-(-1.2805)/-9=-0.142 

5 1.2808 1.1708 1.8182 -0.2846 0.002 -1.3910 dz=-(-1.3910)/-11=-0.126 

6 1.2808 1.1708 1.6917 -0.1581 -0.1263 0.0005 dx=-(-0.1581)/-10= 

-0.158 

7 1.2650 1.1708 1.6917 -0.0001 -0.1105 0.0321 dy=-(-0.1105)/-9= -

0.0123 

Therefore, the solution vector, X =[
𝑥
𝑦
𝑧
] =[

1.2650
1.1708
1.6917

] Ans. 

Power method: 

Power method is a single value method used for determining the dominant eigen 

value of a matrix. It as an iterative method implemented using an initial starting 

vector x. the starting vector can be arbitrary if no suitable approximation is 

available. Power method is implemented as follows  

𝑌 = 𝐴𝑋 − − − − − (𝑎) 

𝑋 =
𝑌

𝑘
− − − − − (𝑏) 

The new value of X is obtained in b is the used in equation a to compute new 

value of Y and the process is repeated until the desired level of accuracy is 

obtained. The parameter k is called scaling factor is the element of Y with largest 

magnitude. 



116 
 

Example: find the largest Eigen value 𝜆 and the corresponding vector v, of the 

matrix using power method 

𝐴 = [
1 2 0
2 1 0
0 0 −1

] 

Solution assume X be column vector to be eigen vector of given matrix, now let 

𝑋 = [
0
1
0
] be the eigen vector 

Now iteration 1 

𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
0
1
0
] = [

2
1
0
]                         𝑋 =

𝑌

𝑘
=

1

2
[
2
1
0
] = [

1
0.5
0

] 

iteration 2 

𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
1

0.5
0

] = [
2

2.5
0

]                         𝑋 =
𝑌

𝑘
=

1

2.5
[

2
2.5
0

] = [
0.8
1
0

] 

iteration 3 

𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
0.8
1
0

] = [
2.8
2.6
0

]                         𝑋 =
𝑌

𝑘
=

1

2.8
[
2.8
2.6
0

]

= [
1

0.929
0

] 

iteration 4 

𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
1

0.929
0

] = [
2.858
2.928

0
]                         𝑋 =

𝑌

𝑘

=
1

2.928
[
2.858
2.928

0
] = [

0.976
1
0

] 

iteration 5 
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𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
0.976

1
0

] = [
2.976
2.952

0
]                         𝑋 =

𝑌

𝑘

=
1

2.976
[
2.976
2.952

0
] = [

1
0.992

0
] 

iteration 6 

𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
1

0.992
0

] = [
2.984
2.992

0
]                         𝑋 =

𝑌

𝑘

=
1

2.992
[
2.984
2.992

0
] = [

0.997
1
0

] 

iteration 7 

𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
0.997

1
0

] = [
2.997
2.994

0
]                         𝑋 =

𝑌

𝑘

=
1

2.997
[
2.997
2.994

0
] = [

1
0.999

0
] 

iteration 8 

𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
1

0.999
0

] = [
2.998
2.999

0
]                         𝑋 =

𝑌

𝑘

=
1

2.999
[
2.998
2.999

0
] = [

1
1
0
] 

iteration 9 

𝑌 = 𝐴𝑋 = [
1 2 0
2 1 0
0 0 −1

] [
1
1
0
] = [

3
3
0
]                         𝑋 =

𝑌

𝑘
=

1

3
[
3
3
0
] = [

1
1
0
] 

 

Since the value of X is same for 8th and 9th iteration so eigen value is 𝜆 = 3 and 

eigen vector is 𝑋 = [
1
1
0
] 
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Practice: Determine the Numerically largest eigen value and the 

corresponding eigen vector of the following matrix, using power method  

[
𝟐𝟓 𝟏 𝟐
𝟏 𝟑 𝟎
𝟐 𝟎 −𝟒

] 

Eigen value is 25.18, eigen vector =[
𝟏

𝟎. 𝟎𝟒𝟓𝟎𝟖
𝟎. 𝟎𝟔𝟖𝟓𝟒

] 

 

 

 

 

Chapter 5 Solution of ordinary differential Equations 

Many of the laws in physics, chemistry, engineering, economics are based on 

empirical observations that describe changes in the state of the system. 

Mathematical models that describe the state of such system are often expressed 

in terms of not only certain system parameters but also their derivatives, such 

mathematical model which uses differential calculus to express relationship 

between variables are known as differential equations. 

Examples: 

1. Kirchhoff’s law 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑖𝑅 = 𝑣 

2. 𝑚
𝑑𝑣

𝑑𝑡
= 𝐹 

3. 𝑚
𝑑2𝑦

𝑑𝑡2
+ 𝑎

𝑑𝑦

𝑑𝑡
+ 𝑘𝑦 = 0 

Here  

• The quantity y that is being differentiated is called dependent variable. 

• The quantity with respect to which the dependent variable is differentiated 

is called independent variable. 

• If there is only one independent variable then the equation is called an 

ordinary differential equation. 
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• If the equation contains more than one independent variable then it is called 

partial differential equation 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦) 

Order of equation: 

The highest derivative that appears in the equation is called order. If there is only 

first derivative then it called first order differential equation. 

 

Degree of equation: 

The degree of differential equation is the power of the highest order derivative 

𝑥𝑦" + 𝑥2𝑦′ = 2𝑦 + 3   𝑜𝑟𝑑𝑒𝑟 = 2, 𝑑𝑒𝑔𝑟𝑒𝑒 =  1 

(𝑦"′)2 + 5𝑦′ = 2𝑦 + 3   𝑜𝑟𝑑𝑒𝑟 = 3, 𝑑𝑒𝑔𝑟𝑒𝑒 =  2 

Initial value problem (IVP) 

In order to obtain the values of the integration constant, we need additional 

information for example consider the solution 𝑦 = 𝑎𝑒𝑥 to the equation 𝑦′ = 𝑦. if 

we are giving a value of y for some x, the constant a can be dertermined, suppose 

y=1 when x=0, then 𝑦(0) = 𝑎𝑒0 = 1, 

∴ 𝑎 = 1 and particular solution is 𝑦 = 𝑒𝑥 

It is also possible to specify the condition at different values of the independent 

variables such problems are called boundary value problem (BVP). 

 

 

Example 

𝑦" = 𝑓(𝑥, 𝑦, 𝑦′) 𝑦(𝑎) = 𝐴, 𝑦(𝑏) =

𝐵  𝑤ℎ𝑒𝑟𝑒 𝑎 & 𝑏 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑜𝑖𝑛𝑡𝑠.  

Solution of ordinary differential equations 

1. Taylor’s series method 

2. Euler’s method 

3. Heun’s method 

4. Runge’s method 

5. Runge’s Kutta 4th order method 

6. Shooting method 

7. Picard’s method 

8. R.K method for simultaneous equations 

9. Solution of higher order differential equation 
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1. Taylor’s series 

Taylor series is often used in determining the order of errors for methods and the 

series itself is the basic for some numerical procedures. 

Let 𝑦′ = 𝑓(𝑥, 𝑦),         𝑦(𝑥0) = 𝑦0         

(7) 

Be the differential equation to which the numerical solution is required. 

Expanding 𝑦(𝑥) about 𝑥 = 𝑥0 by Taylor Series we get 

y(x) = 𝑦(𝑥0) +
(𝑥−𝑥0)𝑦′(𝑥0)

1!
+

(𝑥−𝑥0)2𝑦′′(𝑥0)

2!
+ ⋯     

 (8) 

= 𝑦0 +
(𝑥−𝑥0)𝑦0

′

1!
+

(𝑥−𝑥0)2𝑦0
′′

2!
+ ⋯   (9) 

Putting   𝑥 = 𝑥0 + ℎ = 𝑥1, h=difference we have 

𝑦1 = 𝑦(𝑥1) = 𝑦0 +
ℎ𝑦0

′

1!
+

ℎ2𝑦0
′′

2!
+

ℎ3𝑦0
′′′

3!
…  (10) 

Here 𝑦0
′ , 𝑦0

′′, 𝑦0
′′′ … can be found using equation (1) and its successive 

differentiation at 𝑥 = 𝑥0. The series in (4) can be truncated at any stage if ‘h’ is 

small. Now having obtained 𝑦1we can calculate 𝑦1
′ , 𝑦1

′′, 𝑦1
′′′ from equation (1) at 

𝑥 = 𝑥0 + h 

Now expanding 𝑦(𝑥) by Taylor series about 𝑥 = 𝑥1, we get 

𝑦2 = 𝑦1 +
ℎ𝑦1

′

1!
+

ℎ2𝑦1
′′

2!
+

ℎ3𝑦1
′′′

3!
…       (11) 

Proceeding further we get 

𝑦𝑛 = 𝑦𝑛−1 +
ℎ𝑦𝑛−1

′

1!
+

ℎ2𝑦𝑛−2
′′

2!
+

ℎ3𝑦𝑛−3
′′′

3!
…  (12) 

By taking sufficient number of terms in above series the value of 𝑦𝑛 can be 

obtained without much error 

If a Taylor series is truncated while there are still non-zero derivatives of higher 

order the truncated power series will not be exact. The error term for a truncated 

Taylor Series can be written in several ways but the most useful form when the 

series is truncated after 𝑛𝑡ℎ  term is  

mrdah
Highlight

mrdah
Highlight
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Example: 

Using Taylor series method, solve 
𝑑𝑦

𝑑𝑥
= 𝑥2 − 𝑦, 𝑦(0) = 1 at 𝑥 =

0.1,0.2,0.3 &0.4. 

Solution 

Given 𝑦′ = 𝑥2 − 𝑦,𝑦(0) = 1, 

𝑥0 = 0, 𝑦0 = 1, h = 0.1, 𝑥 = 0.1, 𝑥 = 0.2, 𝑥 = 0.3, 𝑥 = 0.4 

Now  

𝑦′ = 𝑥2 − 𝑦  𝑦0
′ = 𝑥0

2 − 𝑦0 = 0 − 1 = −1 

𝑦′′ = 2𝑥 − 𝑦′  𝑦0
′′ = 2𝑥0 − 𝑦0

′ = 2 ∗ 0 − (−1) = 1 

𝑦′′′ = 2 − 𝑦′′  𝑦0
′′′ = 2 − 𝑦0

′′ = 1 

𝑦𝑖𝑣 = −𝑦′′′  𝑦0
𝑖𝑣 = −𝑦0

′′′ = −1 

By Taylor Series  

𝑦1 = 𝑦0 +
ℎ𝑦0

′

1!
+

ℎ2𝑦0
′′

2!
+

ℎ3𝑦0
′′′

3!
+

ℎ4𝑦0
𝑖𝑣

4!
… 

𝑦1 = 𝑦(0.1)  

= 1+
0.1(−1)

1!
+

(0.1)2∗1

2!
+

0.13∗1

3!
+

0.14∗(−1)

4!
… 

= 1−0.1 + 0.005 + 0.0001667 − 0.00000417 

=0.90516 

Now 

𝑦1
′ = 𝑥1

2 − 𝑦1 = (0.1)2 − 0.90516=-0.89516 

𝑦1
′′ = 2𝑥1 − 𝑦1

′ = 2 ∗ (0.1) − (−0.89516) = 1.09516 

𝑦1
′′′ = 2 − 𝑦1

′′ = 2 − 1.0951 = 0.90484 

𝑦1
𝑖𝑣 = −𝑦1

′′′ = −0.90484 
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By Taylor Series  

𝑦2 = 𝑦1 +
ℎ𝑦1

′

1!
+

ℎ2𝑦1
′′

2!
+

ℎ3𝑦1
′′′

3!
+

ℎ4𝑦1
𝑖𝑣

4!
… 

𝑦2 = 𝑦(0.2)  

= 0.90516 +
0.1∗(−0.89516)

1!
+

(0.1)2∗1.09516

2!
+

0.13∗0.90484

3!
+

0.14∗(−)

4!
… 

= 0.90516 − 0.089516 + 0.0054758 + 0.000150 − 0.00000377 

=0.821266 

Now 

𝑦2
′ = 𝑥2

2 − 𝑦2 = (0.2)2 − 0.8212352 = −0.7812352 

𝑦2
′′ = 2𝑥2 − 𝑦2

′ = 2 ∗ (0.2) − (−0.7812352) = 1.1812352 

𝑦2
′′′ = 2 − 𝑦2

′′ = 2 − 1.1812352 = 0.8187648 

𝑦2
𝑖𝑣 = −𝑦2

′′′ = −0.8187648 

By Taylor Series  

𝑦3 = 𝑦2 +
ℎ𝑦2

′

1!
+

ℎ2𝑦2
′′

2!
+

ℎ3𝑦2
′′′

3!
+

ℎ4𝑦2
𝑖𝑣

4!
… 

𝑦3 = 𝑦(0.3)  

= 0.8212352 +
0.1 ∗ (−0.7812352)

1!
+

(0.1)2 ∗ 1.1812352

2!

+
0.13 ∗ 0.8187648

3!
+

0.14 ∗ (−0.8187648)

4!
… 

= 0.7491509 

 

Now 

𝑦3
′ = 𝑥3

2 − 𝑦3 = (0.3)2 − 0.7491509 = −0.6591509 

𝑦3
′′ = 2𝑥3 − 𝑦3

′ = 2 ∗ (0.3) − (−0.6591509) = 1.2591509 

𝑦3
′′′ = 2 − 𝑦3

′′ = 2 − 1.2591509 = 0.740849 
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𝑦3
𝑖𝑣 = −𝑦3

′′′ = −0.740849 

By Taylor Series  

𝑦4 = 𝑦3 +
ℎ𝑦3

′

1!
+

ℎ2𝑦3
′′

2!
+

ℎ3𝑦3
′′′

3!
+

ℎ4𝑦3
𝑖𝑣

4!
… 

𝑦4 = 𝑦(0.4)  

= 0.7491509 +
0.1 ∗ (−0.6591509)

1!
+

(0.1)2 ∗ 1.2591509

2!

+
0.13 ∗ 0.740849

3!
+ ⋯ 

= 0.6896519 

Similarly we can find the values of 𝑦𝑛 for n=5, 6, 7….. 

2. Euler’s  method: 

Euler’s method is the simplest one step method. It has limited application because 

of its low accuracy. From Taylor’s theorem we have 

y(x) = 𝑦(𝑥0) +
(𝑥 − 𝑥0)𝑦

′(𝑥0)

1!
+

(𝑥 − 𝑥0)
2𝑦′′(𝑥0)

2!
+ ⋯ 

 

Taking only first two terms only 

𝑦(𝑥) = 𝑦(𝑥0) + 𝑦′(𝑥0)(𝑥 − 𝑥0) 

Now, we get, 

𝑦(𝑥1) = 𝑦1 = 𝑦(𝑥0) + (𝑥1 − 𝑥0)𝑓(𝑥0, 𝑦0) 

where 𝑥 = 𝑥1, 𝑓(𝑥0, 𝑦0) = 𝑦′(𝑥0) 

Now let ℎ = 𝑥1 − 𝑥0 

𝑦1 = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) 

Similarly  

𝑦2 = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1) 
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In general  

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖) 

This formula is known as Euler’s method and can be used recursively to evaluate 

y1, y2 … starting from the initial condition 𝑦0 = 𝑦(𝑥0) 

• A new value of y is estimated using the previous value of y as initial 

condition. 

• The term hf(xi,yi) represents the incremental value of y and f(xi,yi) is the 

slope of y(x) at (xi,yi), the new value is obtained by extrapolating linearly 

over the step size h using the slope at its previous value. 

i.e. new value =old value + slope x step size 

 

Example : Given the equation 𝑦′(𝑥) = 3𝑥2 + 1, with y(1)=2, estimate y(2), 

using Euler’s method using h=0.5 & h=0.25,  

Solution 

 

𝑦′(𝑥) = 𝑓(𝑥, 𝑦) = 3𝑥2 + 1 

𝑦(1) = 2, 𝑦(𝑥0) = 𝑦0, 𝑥0 = 1, 𝑦0 = 2 

We know that  

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖) 

a. h=0.5 

𝑦1 = 𝑦(1 + 0.5) = 𝑦(1.5) = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) 

= 𝑦(1) + 0.5 × (3 × 12 + 1) 

= 2 + 0.5 × 4 

= 4 

𝑦1 = 𝑦(2.0) + 𝑦(1.5 + 0.5) = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1) = 𝑦(1.5) + 0.5 × 𝑓(𝑥1.5, 𝑦1.5) 

= 4 + 0.5 × (3 × 1.52 + 1) 

= 7.8750 

∴ 𝑦(2) = 7.8750 

 

b.  h=0.25 

𝑦(1) = 2 

𝑦1 = 𝑦(1 + 0.25) = 𝑦(1.25) = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) = 2 + 0.25 × 𝑓(1,2)

= 2 + 0.25(3 × 12 + 1) = 3 

𝑦2 = 𝑦(1.25 + 0.25) = 𝑦(1.5) = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1) = 3 + 0.25 × 𝑓(1.25,3) 
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= 3 + 0.25(3 × 1.252 + 1) = 4.4218 

𝑦3 = 𝑦(1.5 + 0.25) = 𝑦(1.75) = 𝑦2 + ℎ𝑓(𝑥2, 𝑦2)

= 4.4218 + 0.25 × 𝑓(1.5,4.4218) 

= 4.4218 + 0.25(3 × 1.52 + 1) = 6.3593 

𝑦4 = 𝑦(1.75 + 0.25) = 𝑦(2.0) = 𝑦3 + ℎ𝑓(𝑥3, 𝑦3)

= 6.3593 + 0.25 × 𝑓(1.75,6.3593) 

= 6.3593 + 0.25(3 × 1.752 + 1) = 8.9061 

∴ 𝑦(2.0) = 8.9061 

 

3. Heun’s method:  

Euler’s method is the simplest of all one step methods. It is easy to implement on 

computers. One of the major weakness is large truncation error in Euler’s method. 

This is due to the fact that Euler’s method uses only the first two terms of Taylor’s 

series. Now heun’s method also called improved Euler’s method. 

In Euler’s method the slope at the beginning of the interval is used to extrapolate 

yi to yi+1 over the entire interval, thus 𝑦𝑖+1 = 𝑦𝑖 + 𝑚1ℎ. . . . . . . . 𝑎 where m1 is the 

slope at(xi,yi).  

Alternative is to use the line which is parallel to the tangent at the point 

[𝑥𝑖+1, 𝑦(𝑥𝑖+1)] to extrapolate from 𝑦𝑖  𝑡𝑜 𝑦𝑖+1  

𝑦𝑖+1 = 𝑦𝑖 + 𝑚2ℎ. . . . . . . . 𝑏 

Where, m2 is the slope at [𝑥𝑖+1, 𝑦(𝑥𝑖+1)]. Note that the estimate appears to be 

overestimated. 

Now a third approach is to use a line whose slope is the average of the slopes at 

the end points of the interval, i.e 

𝑦𝑖+1 = 𝑦𝑖 + (
𝑚1 + 𝑚2

2
)ℎ. . . . . . . . 𝑐 

 

This gives the better approximation to 𝑦𝑖+1, this approach is known as Heun’s 

method. 

The formula for implementing Heun’s method can be constructed easily as  

𝑦′(𝑥) = 𝑓(𝑥, 𝑦) 
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We can obtain:  

𝑚1 = 𝑦′(𝑥𝑖) = 𝑓(𝑥𝑖 , 𝑦𝑖) 

𝑚2 = 𝑦′(𝑥𝑖+1) = 𝑓(𝑥𝑖+1, 𝑦𝑖+1) 

∴ 𝑚 =
𝑚1 + 𝑚2

2
=

𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑖+1)

2
 

Now, the equation (c) becomes:  

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑖+1)]. . . . . . 𝑑 

Note that the term yi+1 appears on both sides. The value yi+1 cannot be calculated 

until the value of yi+1 inside the function f(xi+1,yi+1) is available. This value can be 

predicted using Euler’s formula as  

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖) 

Then, the Heun’s  formula can be written as: 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑒𝑖+1)] 

Putting the value of Euler’s formula in above equation we get 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑦𝑖 + ℎ𝑓(𝑥𝑖 , 𝑦𝑖)] 

 

Example : Given the equation 𝑦′(𝑥) =
2𝑦

𝑥
 with y(1)=2, estimate y(2) using 1) 

Euler’s method 2) Heun’s method and compare the result. Take h=0.25 

I. Euler’s method 

h=0.25, y(1)=2 

    

𝑦(1.25) = 𝑦1 = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) = 2 + 0.25𝑓(1,2) = 2 + 0.25 ×
2 × 2

1
= 3 

𝑦(1.5) = 𝑦2 = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1) = 3 + 0.25𝑓(1.25,3) = 3 + 0.25 ×
2 × 3

1.25
= 4.2 
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𝑦(1.75) = 𝑦3 = 𝑦2 + ℎ𝑓(𝑥2, 𝑦2) = 4.2 + 0.25𝑓(1.5,4.2)

= 4.2 + 0.25 ×
2 × 4.2

1.5
= 5.6 

𝑦(2) = 𝑦4 = 𝑦3 + ℎ𝑓(𝑥3, 𝑦3) = 5.6 + 0.25𝑓(1.75,5.6)

= 5.6 + 0.25 ×
2 × 5.6

1.75
= 7.2 

 

II. Heun’s method: 

Iteration 1:  

we know 

𝑦𝑖+1 = 𝑦𝑖 + (
𝑚1 + 𝑚2

2
)ℎ 

𝑦𝑖 = 𝑦0 + (
𝑚1 + 𝑚2

2
)ℎ 

Given the initial condition 𝑦(𝑥0) = 𝑦0 = 𝑦(1) = 2  

𝑦(1 + 0.25) = 𝑦(1.25) = 𝑦1 = 𝑦0 + (
𝑚1 + 𝑚2

2
)ℎ 

𝑚1 = 𝑓(𝑥0,𝑦0) = 𝑓(1,2) =
2 × 2

1
= 4 

𝑚2 = 𝑓(𝑥0 + ℎ, 𝑦0 + 𝑚1ℎ) 

= 𝑓(1 + 0.25,2 + 4 × 0.25) 

= 𝑓(1.25,3) 

=
2 × 3

1.25
 

= 4.8 

𝑦(1.25) = 𝑦0 + (
𝑚1 + 𝑚2

2
) ℎ = 2 + (

4 + 4.8

2
) 0.25 = 3.1 

Iteration 2: 

𝑦(1.25 + 0.25) = 𝑦(1.5) = 𝑦2 = 𝑦1 + (
𝑚1 + 𝑚2

2
)ℎ 

𝑚1 = 𝑓(𝑥1𝑦1) = 𝑓(1.25,3.1) =
2 × 3.1

1.25
= 4.96 
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𝑚2 = 𝑓(𝑥1 + ℎ, 𝑦1 + 𝑚1ℎ) 

= 𝑓(1.25 + 0.25,3.1 + 4.96 × 0.25) 

= 𝑓(1.5,4.34) 

=
2 × 4.34

1.5
 

= 5.7867 

𝑦(1.5) = 𝑦1 + (
𝑚1 + 𝑚2

2
) ℎ = 3.1 + (

4.96 + 5.7867

2
) 0.25 = 4.44 

 

Iteration 3: 

𝑦(1.5 + 0.25) = 𝑦(1.75) = 𝑦3 = 𝑦2 + (
𝑚1 + 𝑚2

2
)ℎ 

𝑚1 = 𝑓(𝑥2𝑦2) = 𝑓(1.5,4.44) =
2 × 4.44

1.5
= 5.92 

𝑚2 = 𝑓(𝑥2 + ℎ, 𝑦2 + 𝑚1ℎ) 

= 𝑓(1.5 + 0.25, 4.44 + 5.92 × 0.25) 

= 𝑓(1.75,5.92) 

=
2 × 5.92

1.75
 

= 6.77 

𝑦(1.75) = 𝑦3 = 𝑦2 + (
𝑚1 + 𝑚2

2
) ℎ = 4.44 + (

5.92 + 6.77

2
) 0.25 = 6.03 

 

Iteration 4: 

𝑦(1.75 + 0.25) = 𝑦(1.5) = 𝑦4 = 𝑦3 + (
𝑚1 + 𝑚2

2
)ℎ 

𝑚1 = 𝑓(𝑥3𝑦3) = 𝑓(1.75,6.03) =
2 × 6.03

1.75
= 6.89 

𝑚2 = 𝑓(𝑥3 + ℎ, 𝑦3 + 𝑚1ℎ) 
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= 𝑓(1.75 + 0.25, 6.03 + 6.89 × 0.25) 

= 𝑓(2,7.75) 

=
2 × 7.75

2
 

= 7.75 

𝑦(2) = 𝑦4 = 𝑦3 + (
𝑚1 + 𝑚2

2
) ℎ = 6.03 + (

6.89 + 7.75

2
) 0.25 = 7.86 

 

 

 

 

 

The above equation can be done using the following formula, note this is 

same problem but done using later formula, you can use any method which 

ever you feel easy to use. 

 

Iteration 1: 

 

We know that  

 

𝑦𝑖+1 = 𝑦𝑖 +
ℎ

2
[𝑓(𝑥𝑖 , 𝑦𝑖) + 𝑓(𝑥𝑖+1, 𝑦𝑒𝑖+1)] 

We know 

𝑓(𝑥0, 𝑦0) = 𝑓(1,2) =
2𝑦

𝑥
=

2 × 2

1
= 4 

𝑦𝑒(1.25) = 𝑦(1) + ℎ × 𝑓(𝑥1, 𝑦(1)) 

= 2 + 0.25𝑓(1,2) 

= 2 + 0.25 ×
2 × 2

1
 

= 3 

𝑦(1.25) = 𝑦(1) +
ℎ

2
[𝑓(𝑥1, 𝑦1) + 𝑓(𝑥𝑖+1, 𝑦𝑒𝑖+1)] 

= 2 +
0.25

2
[𝑓(1,2) + 𝑓(1.25,3)] 
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2 +
0.25

2
[
2 × 2

1
+

2 × 3

1.25
] 

= 3.1 

Iteration 2: 

𝑦(1.5) = 𝑦(1.25) +
ℎ

2
[𝑓(𝑥1.25, 𝑦1.25) + 𝑓(𝑥1.5, 𝑦𝑒1.5)] 

 

𝑦(1.5) = 𝑦(1.25) +
ℎ

2
[𝑓(1.25,3.1) + 𝑓(𝑥1.5, 𝑦𝑒1.5)] 

 

𝑦𝑒(1.25) = 𝑦(1.25) + ℎ × 𝑓(𝑥1.25, 𝑦1.25) 

= 3.1 + 0.25𝑓(1.25,3.1) 

= 3.1 + 0.25 ×
2 × 3.1

1.25
 

= 4.34 

𝑦(1.5) = 𝑦(1.25) +
ℎ

2
[𝑓(1.25,3.1) + 𝑓(𝑥1.5, 𝑦𝑒1.5)] 

𝑦(1.5) = 3.1 +
0.25

2
[𝑓(1.25,3.1) + 𝑓(1.5,4.34)] 

= 3.1 +
0.25

2
[2 ×

3.1

1.25
+ 2 ×

4.34

1.5
] 

= 4.4433 

Iteration 3: 

𝑦(1.75) = 𝑦(1.5) +
ℎ

2
[𝑓(𝑥1.5, 𝑦1.5) + 𝑓(𝑥1.75, 𝑦𝑒1.75)] 

 

𝑦𝑒(1.75) = 𝑦(1.5) + ℎ × 𝑓(𝑥1.5, 𝑦1.5) 

= 4.4433 + 0.25𝑓(1.5,4.4433) 

= 4.4433 + 0.25 ×
2 × 4.4433

1.5
 

= 5.9244 

𝑦(1.75) = 𝑦(1.5) +
ℎ

2
[𝑓(1.5,4.4433) + 𝑓(𝑥1.5, 5.9244)] 

= 4.4433 +
0.25

2
[2 ×

4.4433

1.5
+ 2 ×

5.9244

1.75
] 

= 6.0302 

Iteration 4: 

𝑦(2) = 𝑦(1.75) +
ℎ

2
[𝑓(𝑥1.75, 𝑦1.75) + 𝑓(𝑥2, 𝑦𝑒2)] 
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𝑦𝑒(2) = 𝑦(1.75) + ℎ × 𝑓(𝑥1.75, 𝑦1.75) 

= 6.0302 + 0.25𝑓(1.75,6.0302) 

= 6.0302 + 0.25 ×
2 × 6.0302

1.75
 

= 7.7531 

𝑦(2) = 𝑦(1.75) +
ℎ

2
[𝑓(1.75,6.0302) + 𝑓(2,7.7531)] 

= 6.0302 +
0.25

2
[2 ×

6.0302

1.75
+ 2 ×

7.7531

2
] 

= 7.8608 

The exact solution of the equation 𝑦′(𝑥) = 2
𝑦

𝑥
 with 𝑦(1) = 2  is obtained as  

𝑦(𝑥) = 2𝑥2 

𝑦(2) = 2 × 22 = 8 

error =8-7.8608=0.1392 

 

Runge Kutta method: 

Runge Kutta method refers to a family of one step methods used for numerical 

solution of initial value problems. They are all based on the general form of the 

extrapolation equation:  

𝑦𝑖+1 = 𝑦𝑖 + 𝑠𝑙𝑜𝑝𝑒 × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑠𝑖𝑧𝑒 

= 𝑦𝑖 + 𝑚ℎ 

Where m represents the slope that is weighted averages of the slope at various 

points in the interval h. Runge Kutta (RK) methods are known by their order. For 

instance an RK method is called r-order Runge Kutta method when slope at r 

points are used to construct the weighted average slope m. 

Euler’s method is the first order RK method because it uses only one slope at 

(xi,yi) to estimate 𝑦𝑖+1. 

Huen’s method is a second order RK method because it employs slope at two 

ends points of the interval. It demonstrated that higher order would be better the 

accuracy of estimates. 
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Fourth order Runge Kutta method (Classical fourth order Runge Kutta 

method) 

The classical fourth order Runge Kutta method is given as: 

𝑦𝑖+1 = 𝑦𝑖 + (
𝑚1 + 2𝑚2 + 2𝑚3 + 𝑚4

6
)ℎ 

Where 

𝑚1 = 𝑓(𝑥𝑖 , 𝑦𝑖) 

𝑚2 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑚1ℎ

2
) 

𝑚3 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑚2ℎ

2
) 

𝑚4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑚3ℎ) 

Runge Kutta (3rd order RK method) 

𝑦𝑖+1 = 𝑦𝑖 + (
𝑚1 + 4𝑚4 + 𝑚3

6
)ℎ 

Where, 

𝑚1 = 𝑓(𝑥𝑖 , 𝑦𝑖) 

𝑚2 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑚1ℎ) 

𝑚3 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑚2ℎ) 

𝑚4 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 + 𝑚1

ℎ

2
) 

Example : Use the classical RK method to estimate y(0.4) when 𝑦′(𝑥) = 𝑥2 +

𝑦2with 𝑦(0) = 0, assume h=0.2. 

Solution 

Given condition 

𝑦(0) = 0, 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 

We know that,  
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𝑦𝑖+1 = 𝑦𝑖 + (
𝑚1 + 2𝑚2 + 2𝑚3 + 𝑚4

6
)ℎ 

Where, 

𝑚1 = 𝑓(𝑥𝑖 , 𝑦𝑖) 

𝑚2 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑚1ℎ

2
) 

𝑚3 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

𝑚2ℎ

2
) 

𝑚4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + 𝑚3ℎ) 

 

iteration 1: 

𝑦(0.2) = 𝑦0 + (
𝑚1 + 2𝑚1 + 2𝑚3 + 𝑚4

6
)ℎ 

𝑚1 = 𝑓(𝑥0, 𝑦0) = 𝑓(0,0) = 0 

𝑚2 = 𝑓(𝑥0 +
ℎ

2
, 𝑦0 +

𝑚1ℎ

2
) = 𝑓(0 +

0.2

2
, 0 +

0 × 0.2

2
) = 𝑓(0.1,0)

= 0.12 + 0.02 = 0.01 

𝑚3 = 𝑓(𝑥0 +
ℎ

2
, 𝑦0 +

𝑚2ℎ

2
) = 𝑓(0 +

0.2

2
, 0 +

0.01 × 0.2

2
) = 𝑓(0.1,0.001)

= 0.12 + 0.0012 = 0.01 

𝑚4 = 𝑓(𝑥0 + ℎ, 𝑦0 + 𝑚3ℎ) = 𝑓(0 + 0.2,0 + 0.01 × 0.2) = 𝑓(0.2,0.002)

= 0.12 + 0.0022 = 0.04 

𝑦(0.2) = 𝑦0 + (
𝑚1 + 2𝑚1 + 2𝑚3 + 𝑚4

6
) ℎ 

𝑦(0.2) = 0 + (
0 + 2 × 0.01 + 2 × 0.01 + 0.04

6
) 0.2 = 0.00267 

Iteration 2 

𝑦(0.4) = 𝑦1 + (
𝑚1 + 2𝑚1 + 2𝑚3 + 𝑚4

6
)ℎ 
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𝑦1 = 𝑦(0.2) 

𝑚1 = 𝑓(𝑥0.2, 𝑦0.2) = 𝑓(0.2,0.00267) = 0.04 

𝑚2 = 𝑓(0.2 +
0.2

2
, 0.00267 +

0.04 × 0.2

2
) = 𝑓(0.3,0.0067)

= 0.32 + 0.00672 = 0.09004 

𝑚3 = 𝑓(0.2 +
0.2

2
, 0.00267 +

0.09004 × 0.2

2
) = 𝑓(0.3,0.01167)

= 0.32 + 0.011672 = 0.09014 

𝑚4 = 𝑓(0.2 + 0.2,0.00267 + 0.9014 × 0.2) = 𝑓(0.4,0.02070)

= 0.42 + 0.020702 = 0.16043 

𝑦(0.4) = 𝑦0 + (
𝑚1 + 2𝑚1 + 2𝑚3 + 𝑚4

6
) ℎ 

𝑦(0.4) = 0.00267 + (
0.04 + 2 × 0.09004 + 2 × 0.09014 + 0.16043

6
) 0.2

= 0.02136 

 

 

Runge Kutta method for simultaneous first order equations:  

Consider the simultaneous equation  

𝑑𝑦

𝑑𝑥
= 𝑓1(𝑥, 𝑦, 𝑧)   &  

𝑑𝑥

𝑑𝑧
= 𝑓2(𝑥, 𝑦, 𝑧) 

With the initial conditions 𝑦(𝑥0) = 𝑦0, 𝑧(𝑥0) = 𝑧0 now starting from (𝑥0, 𝑦0, 𝑧0) 

the increment k and l in y and z are given by the following formula  

𝑘1 = ℎ𝑓1(𝑥0, 𝑦0, 𝑧0) ;   𝑙1 = ℎ𝑓2(𝑥0, 𝑦0, 𝑧0) 

𝑘2 = ℎ𝑓1(𝑥0 +
ℎ

2
, 𝑦0 +

𝑘1

2
, 𝑧0 +

𝑙1
2
) ;   𝑙2 = ℎ𝑓2(𝑥0 +

ℎ

2
, 𝑦0 +

𝑘1

2
, 𝑧0 +

𝑙1
2
) 

𝑘3 = ℎ𝑓1(𝑥0 +
ℎ

2
, 𝑦0 +

𝑘2

2
, 𝑧0 +

𝑙2
2
) ;   𝑙3 = ℎ𝑓2(𝑥0 +

ℎ

2
, 𝑦0 +

𝑘2

2
, 𝑧0 +

𝑙2
2
) 

𝑘4 = ℎ𝑓1(𝑥0 + ℎ, 𝑦0 + 𝑘3, 𝑧0 + 𝑙3) ;   𝑙4 = ℎ𝑓2(𝑥0 + ℎ, 𝑦0 + 𝑘3, 𝑧0 + 𝑙3) 
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𝑘 =
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

6
 

𝑙 =
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)

6
 

y1 = y0 + k,  z1 = z0 + l 

To compute y2,z2 we simply replace x0,y0,z0  by x1,y1,z1 in the above formulae 

If we consider the second order R.K method 

𝑘1 = ℎ𝑓1(𝑥0, 𝑦0, 𝑧0) ;   𝑙1 = ℎ𝑓2(𝑥0, 𝑦0, 𝑧0) 

𝑘2 = ℎ𝑓1(𝑥0 + ℎ, 𝑦0 + 𝑘1, 𝑧0 + 𝑙1) ;   𝑙2 = ℎ𝑓2(𝑥0 + ℎ, 𝑦0 + 𝑘1, 𝑧0 + 𝑙1) 

𝑘 =
𝑘1 + 𝑘2

2
 ;     𝑙 =

𝑙1 + 𝑙2
2

 

𝑦1 = 𝑦0 + 𝑘 ; 𝑧1 = 𝑧0 + 𝑘 

Example: Solve 
𝑑𝑦

𝑑𝑥
= 𝑦𝑧 + 𝑥; 

𝑑𝑧

𝑑𝑥
= 𝑥𝑧 + 𝑦 given that y(0)=1,z(0)=-1 for 

y(0.1),z(0.1) 

Solution: 

Here, 

𝑓1(𝑥, 𝑦, 𝑧) = 𝑦𝑧 + 𝑥 ;  𝑓2(𝑥, 𝑦, 𝑧) = 𝑥𝑧 + 𝑦  

 let h=0.1 x0=0, y0=1, z0=-1 

𝑘1 = ℎ𝑓1(𝑥0, 𝑦0, 𝑧0) = 0.1𝑓1(0,1, −1) = 0.1(1 × −1 + 0) = −0.1 

𝑙1 = ℎ𝑓2(𝑥0, 𝑦0, 𝑧0) = 0.1𝑓2(0,1, −1) = 0.1(0 × −1 + 1) = 0.1 

𝑘2 = ℎ𝑓1 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘1

2
, 𝑧0 +

𝑙1
2
) 

= 0.1𝑓1 (0 +
0.1

2
, 1 +

−0.1

2
, −1 +

0.1

2
) 

= 0.1𝑓1(0.05,0.95, −0.95) 

= 0.1(0.95 × −0.95 + 0.05) 

= −0.08525 
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𝑙2 = ℎ𝑓2 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘1

2
, 𝑧0 +

𝑙1
2
) 

= 0.1𝑓2 (0 +
0.1

2
, 1 +

−0.1

2
, −1 +

0.1

2
) 

= 0.1(0.05 × −0.95 + 0.95) 

= 0.09025 

 

𝑘3 = ℎ𝑓1 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘2

2
, 𝑧0 +

𝑙2
2
) 

= 0.1𝑓1 (0 +
0.1

2
, 1 +

−0.08525

2
, −1 +

0.09025

2
) 

= 0.1𝑓1(0.05,0.95738,−0.95738) 

= 0.1(0.95738 × −0.95738 + 0.05) = −0.08666 

 

 𝑙3 = ℎ𝑓2(𝑥0 +
ℎ

2
, 𝑦0 +

𝑘2

2
, 𝑧0 +

𝑙2
2
) 

= 0.1𝑓2 (0 +
0.1

2
, 1 +

−0.0891

2
, −1 +

0.0903

2
) 

= 0.1𝑓2(0.05,0.95738,−0.95738) 

= 0.1(0.05 × −0.95738,+0.95738) 

= 0.09095 

𝑘4 = ℎ𝑓1(𝑥0 + ℎ, 𝑦0 + 𝑘3, 𝑧0 + 𝑙3) 

= 0.1𝑓1(0 + 0.1,1 + (−0.08666), −1 + 0.09095) 

= 0.1𝑓1(0.1,0.91334,−0.90905) 

= 0.1(0.91334 × −0.90905 + 0.1) 

= −0.07303 
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𝑙4 = ℎ𝑓2(𝑥0 + ℎ, 𝑦0 + 𝑘3, 𝑧0 + 𝑙3) 

= 0.1𝑓2(0 + 0.1,1 + (−0.0862), −1 + 0.0907) 

= 0.1𝑓2(0.1,0.91334,−0.90905) 

= 0.1(0.1 × −0.90905 + 0.91334) 

= 0.08224 

 

𝑘 =
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

6
 

=
(−0.1 + 2 × −0.8525 + 2 × −0.08666 − 0.07303)

6
 

= −0.08614 

𝑙 =
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)

6
 

=
(0.1 + 2 × 0.09025 + 2 × 0.09095 + 0.082224)

6
 

= 0.09077 

𝑦1 = 𝑦(0.1) = 𝑦0 + 𝑘 = 1 + (−0.08614) = 0.91386 

𝑧1 = 𝑧(0.1) = 𝑧0 + 𝑙 = −1 + 0.09077 = −0.90923 

Practice: Compute y(0.2) & z(0.2) in the above solution. 

Higher order equations: 

A higher order differential equation is in the form  

𝑑𝑚𝑦

𝑑𝑥𝑚
= 𝑓(𝑥, 𝑦,

𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
. . . . ). . . . . . 𝑎 

With m initial conditions given as 

𝑦(𝑥0) = 𝑎1, 𝑦
′(𝑥0) = 𝑎2. . . . . 𝑦

𝑚−1(𝑥0) = 𝑎𝑚 
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we can replace equation a by a system of first order equation as follows. Let us 

denote  

𝑦 = 𝑦1,
𝑑𝑦

𝑑𝑥
= 𝑦2,

𝑑2𝑦

𝑑𝑥2
= 𝑦3. . . .. 

then  

𝑑𝑦1

𝑑𝑥
= 𝑦2                                  𝑦1(𝑥0) = 𝑦1,0 = 𝑎1 

𝑑𝑦2

𝑑𝑥
= 𝑦3                                  𝑦2(𝑥0) = 𝑦2,0 = 𝑎2 

…. 

𝑑𝑦𝑚−1

𝑑𝑥
= 𝑦𝑚                                  𝑦𝑚−1(𝑥0) = 𝑦𝑚−1,0 = 𝑎𝑚−1 

𝑑𝑦𝑚

𝑑𝑥
= 𝑓(𝑥1, 𝑦2, 𝑦2. . . 𝑦𝑚)                                  𝑦𝑚(𝑥0) = 𝑦𝑚,0 = 𝑎𝑚 

This system is similar to the system of first order with the condition,  

𝑓𝑖 = 𝑦𝑖+1, 𝑖 = 1,2, . . . . 𝑚 − 1 

𝑓𝑚 = 𝑓(𝑥, 𝑦1, 𝑦2. . . 𝑦𝑚) 

RK method for second order differential equations: 

Consider the second order differential equation 

 
𝑑2𝑦

𝑑𝑥2
= 𝜙 [𝑥, 𝑦,

𝑑𝑦

𝑑𝑥
]             𝑦(𝑥0) = 𝑦0, 𝑦

′(𝑥0) = 𝑦′
0
, 𝑧(𝑥0) = 𝑧0. . . . . . . . (𝑎) 

Let 
𝑑𝑦

𝑑𝑥
= 𝑧, 𝑡ℎ𝑒𝑛 ,

𝑑2𝑦

𝑑𝑥2
=

𝑑𝑧

𝑑𝑥
  

Substituting equation (a) we get 

𝑑𝑧

𝑑𝑥
= 𝑧 = ∅(𝑥, 𝑦, 𝑧), 𝑦(𝑥0) = 𝑦0, 𝑧(𝑥0) = 𝑧0  

The problem reduces to 

 
𝑑𝑦

𝑑𝑥
= 𝑧 = 𝑓1(𝑥, 𝑦, 𝑧) & 

𝑑𝑧

𝑑𝑥
= 𝑧′ = 𝑓2(𝑥, 𝑦, 𝑧) subjected to 𝑦(𝑥0) = 𝑦0, 𝑧(𝑥0) =

𝑧0 and this can be solved as before. 
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Example : Solve 𝑦" = 𝑥𝑦′ − 𝑦, 𝑦(0) = 3, 𝑦′(0) = 0 to approximate y(0.1). 

Given:  

𝑦" = 𝑥𝑦′ − 𝑦, 𝑦(0) = 3, 𝑦′(0) = 0, ℎ = 0.1 

Let 
𝑑𝑦

𝑑𝑥
= 𝑦′ = 𝑧, then 𝑦" = 𝑧′, above equation reduces to  

𝑦′ = 𝑧 = 𝑓1(𝑥, 𝑦, 𝑧) 

𝑦" = 𝑧′ = 𝑥𝑦′ − 𝑦 = 𝑥𝑧 − 𝑦 = 𝑓2(𝑥, 𝑦, 𝑧) 

Subjected to y(0)=3 & z(0) =0 .i.e 𝑥0 = 0, 𝑦0 = 3, 𝑧0 = 0 

Now,  

𝑘1 = ℎ𝑓1(𝑥0, 𝑦0, 𝑧0) = ℎ(𝑧0) = 0.1 × 0 = 0 

𝑙1 = ℎ𝑓2(𝑥0, 𝑦0, 𝑧0) = ℎ𝑓2(0,3,0) = 0.1 × (0 × 0 − 3) = −0.3 

𝑘2 = ℎ𝑓1 (𝑥0 +
ℎ

2
, 𝑦0 +

𝑘1

2
, 𝑧0 +

𝑙1
2
) 

= ℎ𝑓1 (0 +
0.1

2
, 3 +

0

2
, 0 + (−

0.3

2
)) 

= ℎ𝑓1(0.05,3, −0.15) 

= 0.1(−0.15) 

= −0.015 

 

𝑙2 = 0.1𝑓2 (0 +
0.1

2
, 3 +

0

2
, 0 −

0.3

2
) 

= 0.1𝑓2(0.05,3, −0.15) 

= 0.1(0.05 × −0.0015 − 3) = −0.3001 

 

𝑘3 = ℎ𝑓1 (0 +
0.1

2
, 3 +

−0.15

2
, 0 +

−0.3001

2
) 
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= 0.1𝑓1(0.05,2.925,−0.1501) 

= 0.1 × −0.1501 

= −0.0150 

 

 𝑙3 = ℎ𝑓2(0 +
0.1

2
, 3 +

−0.15

2
, 0 +

−0.3001

2
) 

= 0.1𝑓2(0.05,2.925, −0.1501) 

= 0.1(0.05 × −0.1501 − 2.925) 

= −0.2933 

𝑘4 = ℎ𝑓1(0 + 0.1,3 + (−0.0150),0 + (−0.2933)) 

= 0.1𝑓1(0.1,2.9850, −2.933) 

= 0.1 × −0.2933 

= −0.0293 

 

 

𝑙4 = ℎ𝑓2(0 + 0.1,3 + (−0.0150),0 + (−0.2933)) 

= 0.1𝑓2((0.1,2.9850, −2.933)) 

= 0.1(0.1 × −0.293 − 2.9850) 

= −0.3014 

 

𝑘 =
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

6
 

=
(0 + 2 × −0.015 + 2 × −0.0150 − 0.0293)

6
 

= −0.0149 
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𝑙 =
(𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4)

6
 

=
(−0.3 + 2 × −0.3001 + 2 × −0.2933 − 0.3014)

6
 

= −0.2980 

𝑦1 = 𝑦(0.1) = 𝑦0 + 𝑘 = 3 + (−0.3014) = 2.6986 

𝑧1 = 𝑧(0.1) = 𝑧0 + 𝑙 = 0 − 0.2980 = −0.2980 

 

Picard method of successive approximation 

Consider the first order differential equation 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) subjected to 𝑦(𝑥0) =

𝑦0. We can integrate this to obtain the solution in the interval(x0,x). 

The above equation can be written as dy = f(x, y)dx 

Integrating between the limits , we get 

∫ 𝑑𝑦
𝑦

𝑦0

= ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥

𝑥0

 

𝑦 − 𝑦0 = ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥

𝑥0

 

𝑦 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥

𝑥0

 

𝑦(𝑥) = 𝑦(𝑥0) + ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑥

𝑥0

 

Since y appears under the integral sign on the right, the integration cannot be 

formed. The dependent variable should be replaced by either a constant or a 

function of x, since we know the initial value of y at x=x0 we may use this as a 

first approximation to the solution and the result can be used on the right hand 

side to obtain the next approximation. 

Now by Picard’s methods first approximation we replace y by y0 in f(x,y) i.e   
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𝑦1 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦0)𝑑𝑥
𝑥

𝑥0

 

For second approximation y2 replace y by y1 

𝑦2 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦1)𝑑𝑥
𝑥

𝑥0

 … .. 

𝑦𝑛 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦𝑛−1)𝑑𝑥
𝑥

𝑥0

 

The process is to be stopped when two values of y, are same to desired degree of 

accuracy  

Note:  

1. This method is applicable only to a limited class of equations in which the 

successive integration can be perform easily. 

2. Sometimes it may not be possible to carry out the integration. 

3. It is not convenient method for computer-based solution. 

 

Example : Use Picard’s method to approximate the value of y when 

x=0.1,0.2,0.3,0.4 & 0.5. given that y=1 at x=0, y’=1+xy, correct up to three 

decimal places 

Given 

𝑑𝑦

𝑑𝑥
= 1 + 𝑥𝑦 ;  𝑦(0) = 1 

𝑓(𝑥, 𝑦) = 1 + 𝑥𝑦, 𝑦0 = 1, 𝑥0 = 0 

first approximation 

𝑦1 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦0)𝑑𝑥
𝑥

𝑥0

= 1 + ∫ (1 + 𝑥𝑦0)𝑑𝑥
𝑥

0

 

= 1 + ∫ (1 + 𝑥)𝑑𝑥
𝑥

0

 

= 1 + 𝑥 +
𝑥2

2
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Second approximation  

𝑦2 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦1)𝑑𝑥
𝑥

𝑥0

 

= 1 + ∫ (1 + 𝑥𝑦1)𝑑𝑥
𝑥

0

 

= 1 + ∫ (1 + 𝑥 (1 + 𝑥 +
𝑥2

2
))𝑑𝑥

𝑥

0

 

=  1 + 𝑥 +
𝑥2

2
+

𝑥3

3
+

𝑥4

8
 

 

Third approximation 

𝑦3 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦2)𝑑𝑥
𝑥

𝑥0

 

= 1 + ∫ (1 + 𝑥𝑦2)𝑑𝑥
𝑥

0

 

= 1 + ∫ (1 + 𝑥 (1 + 𝑥 +
𝑥2

2
+

𝑥3

3
+

𝑥4

8
))𝑑𝑥

𝑥

0

 

=  1 + 𝑥 +
𝑥2

2
+

𝑥3

3
+

𝑥4

8
+

𝑥5

15
+

𝑥6

48
 

  

Fourth approximation 

𝑦4 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦3)𝑑𝑥
𝑥

𝑥0

 

= 1 + ∫ (1 + 𝑥𝑦3)𝑑𝑥
𝑥

0

 

= 1 + ∫ (1 + 𝑥 ( 1 + 𝑥 +
𝑥2

2
+

𝑥3

3
+

𝑥4

8
+

𝑥5

15
+

𝑥6

48
))𝑑𝑥

𝑥

0
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=  1 + 𝑥 +
𝑥2

2
+

𝑥3

3
+

𝑥4

8
+

𝑥5

15
+

𝑥6

48
+

𝑥7

105
+

𝑥8

348
 

Now at x=0.1 

Y1=1.1050 

Y2=1.1053 

Y3=1.1053 

Since the value is correct up to three decimal places y(0.1)=1.105 

Shooting method 

This method is called shooting method because it resembles an artillery problem. 

In this method the given boundary value problem is first converted into an 

equivalent initial value problem an then solved using any of the method discussed 

in previous section. 

Consider the equation 

𝑦" = 𝑓(𝑥, 𝑦, 𝑦′) 𝑦(𝑎) = 𝐴, 𝑦(𝑏) = 𝐵   

Letting 𝑦′ = 𝑧, we obtain the following set of two equations  𝑦′ = 𝑧 , 𝑧′ =

𝑓(𝑥, 𝑦, 𝑧). In order to solve this set as initial value problem we need two 

conditions at x=a, we have one condition y(a)=A and therefore require another 

condition for z at x=a. let us assume that 𝑧(𝑎) = 𝑀1, where M1 is a guess. Note 

M1 represents the slope 𝑦′(𝑥) 𝑎𝑡 𝑥 = 𝑎 thus the problem is reduced to as system 

two first order equation with initial conditions  

𝑦′ = 𝑧       𝑦(𝑎) = 𝐴 

𝑧′ = 𝑓(𝑥, 𝑦, 𝑧)            𝑧(𝑎) = 𝑀1 ……(𝑎) 

Equation a can be solved for y and z, using any one step method, using steps of 

h, until the solution at x=b is reached. Let the estimated value of y(x) at x=b be 

B1, if B1=B then we have obtained the required solution. In practice it is very 

unlikely that our initial guess z(a)=M1 is correct. 

If 𝐵1 ≠ 𝐵 then we obtain the solution with another guess say z(a) =M2. Let new 

estimate of y(x) be at x=b be B2. If B2 is not equal to B then process is continued 

till we obtain the correct estimate of y(b). However the procedure can be 
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accelerated by suing an improves guess for z(a) after estimates of B1 & B2 are 

obtained. 

 

   

Let us assume that z(a)=M3 lead to the value of  y(b)=B, if we assume that values 

of M and B are linearly related then  

𝑀3 − 𝑀2

𝐵 − 𝐵2
=

𝑀2 − 𝑀1

𝐵2 − 𝐵1
 

𝑀3 = 𝑀2 +
𝐵 − 𝐵2

𝐵2 − 𝐵1
(𝑀2 − 𝑀1) 

𝑀3 = 𝑀2 −
𝐵2 − 𝐵

𝐵2 − 𝐵1
(𝑀2 − 𝑀1) 

Now with z(a)=M3, we can again obtain the solution of y(x). 

Example : using shooting method solve the equation  
𝑑2𝑦

𝑑𝑥2
= 6𝑥, 𝑦(1) =

2, 𝑦(2) = 9 in the interval (1,2) 

Solution 

By transformation 

𝑑𝑦

𝑑𝑥
= 𝑧 = 𝑓1(𝑥, 𝑦, 𝑧), 𝑦(1) = 2 ,

𝑑𝑧

𝑑𝑥
= 6𝑥 = 𝑓2(𝑥, 𝑦, 𝑧) 

mrdah
Highlight

mrdah
Highlight
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Let us assume that 𝑧(1) = 𝑦′(1) = 2(𝑀1 𝑠𝑎𝑦), applying Heun’s method we 

obtain the solution as follows 

Iteration 1: 

h=0.5, x0=1, y(1)=y0=2, z(1)=z0=2 

𝑦𝑖+1 = 𝑦𝑖 + (
𝑚1 + 𝑚2

2
)ℎ 

𝑚1(1) = 𝑓1(𝑥0, 𝑦0, 𝑧0) = 𝑓1(1,2,2) = 𝑧0 = 2 

𝑚1(2) = 𝑓2(𝑥0, 𝑦0, 𝑧0) = 𝑓2(1,2,2) = 6𝑥0 = 6 × 1 = 6 

𝑚2(1) = 𝑓1(𝑥0 + ℎ, 𝑦0 + 𝑚1(1)ℎ, 𝑧0 + hm1(2)) 

= 𝑓1(1 + 0.5,2 + 2 × 0.5,2 + 6 × 0.5) 

= 𝑓1(1.5,3,5) 

= 5 

𝑚2(2) = 𝑓2(𝑥0 + ℎ, 𝑦0 + 𝑚1(1)ℎ, 𝑧0 + hm1(2)) 

= 𝑓2(1 + 0.5,2 + 2 × 0.5,2 + 6 × 0.5) 

= 𝑓1(1.5,3,5) 

= 6 × 𝑥 

= 6 × 1.5 

= 9 

 

𝑚(1) =
𝑚1(1) + 𝑚2(1)

2
=

2 + 5

2
= 3.5 

𝑚(2) =
𝑚1(2) + 𝑚2(2)

2
=

6 + 9

2
= 7.5 

 

𝑦(𝑥1) = 𝑦(1.5) = 𝑦(1) + 𝑚(1)ℎ = 2 + 3.5 × 0.5 = 3.75 

𝑧(𝑥1) = 𝑧(1.5) = 𝑧(1) + 𝑚(2)ℎ = 2 + 7.5 × 0.5 = 5.75 
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iteration 2 : 

h=0.5,  x1=1.5,   y1=3.75,  z1=5.75 

𝑚1(1) = 𝑓1(𝑥1, 𝑦1, 𝑧1) = 𝑧1 = 5.75 

𝑚1(2) = 𝑓2(𝑥1, 𝑦1, 𝑧1) = 6𝑥1 = 6 × 1.5 = 9 

 

𝑚2(1) = 𝑓1(𝑥1 + ℎ, 𝑦1 + 𝑚1(1)ℎ, 𝑧1 + hm1(2)) 

= 𝑓1(1.5 + 0.5,3.75 + 5.75 × 0.5,5.75 + 9 × 0.5) 

= 𝑓1(2,6.625,10.25) 

= 10.25 

𝑚2(2) = 𝑓2(𝑥1 + ℎ, 𝑦1 + 𝑚1(1)ℎ, 𝑧1 + hm1(2)) 

= 𝑓2(1.5 + 0.5,3.75 + 5.75 × 0.5,5.75 + 9 × 0.5) 

= 𝑓1(2,6.625,10.25) 

= 6 × 𝑥 

= 6 × 2 

= 12 

𝑚(1) =
𝑚1(1) + 𝑚2(1)

2
=

5.75 + 10.25

2
= 8 

𝑚(2) =
𝑚1(2) + 𝑚2(2)

2
=

9 + 12

2
= 10.5 

𝑦(𝑥2) = 𝑦(2) = 𝑦(1) + 𝑚(1)ℎ = 3.75 + 8 × 0.5 = 7.75 

This gives B1=7.75 which is less than B=9 

Now let us assume z (1) =y’ (1) =4(M2) and again estimate y (2) 

Iteration 1: 

h=0.5, x0=1, y(1)=y0=2, z(1)=z0=4 
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𝑦𝑖+1 = 𝑦𝑖 + (
𝑚1 + 𝑚2

2
)ℎ 

𝑚1(1) = 𝑓1(𝑥0, 𝑦0, 𝑧0) = 𝑓1(1,2,4) = 𝑧0 = 4 

𝑚1(2) = 𝑓2(𝑥0, 𝑦0, 𝑧0) = 𝑓2(1,2,4) = 6𝑥0 = 6 × 1 = 6 

𝑚2(1) = 𝑓1(𝑥0 + ℎ, 𝑦0 + 𝑚1(1)ℎ, 𝑧0 + hm1(2)) 

= 𝑓1(1 + 0.5,2 + 4 × 0.5,4 + 6 × 0.5) 

= 𝑓1(1.5,4,7) 

= 7 

𝑚2(2) = 𝑓2(𝑥0 + ℎ, 𝑦0 + 𝑚1(1)ℎ, 𝑧0 + hm1(2)) 

= 𝑓2(1 + 0.5,2 + 4 × 0.5,4 + 6 × 0.5) 

= 𝑓1(1.5,4,7) 

= 6 × 𝑥 

= 6 × 1.5 

= 9 

 

𝑚(1) =
𝑚1(1) + 𝑚2(1)

2
=

4 + 7

2
= 5.5 

𝑚(2) =
𝑚1(2) + 𝑚2(2)

2
=

6 + 9

2
= 7.5 

 

𝑦(𝑥1) = 𝑦(1.5) = 𝑦(1) + 𝑚(1)ℎ = 2 + 5.5 × 0.5 = 4.75 

𝑧(𝑥1) = 𝑧(1.5) = 𝑧(1) + 𝑚(2)ℎ = 4 + 7.5 × 0.5 = 7.75 

 

iteration 2 : 

h=0.5,  x1=1.5,   y1=4.75,  z1=7.75 
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𝑚1(1) = 𝑓1(𝑥1, 𝑦1, 𝑧1) = 𝑧1 = 7.75 

𝑚1(2) = 𝑓2(𝑥1, 𝑦1, 𝑧1) = 6𝑥1 = 6 × 1.5 = 9 

 

𝑚2(1) = 𝑓1(𝑥1 + ℎ, 𝑦1 + 𝑚1(1)ℎ, 𝑧1 + hm1(2)) 

= 𝑓1(1.5 + 0.5,4.75 + 7.75 × 0.5,7.75 + 9 × 0.5) 

= 𝑓1(2,8.625,12.25) 

= 12.25 

𝑚2(2) = 𝑓2(𝑥1 + ℎ, 𝑦1 + 𝑚1(1)ℎ, 𝑧1 + hm1(2)) 

= 𝑓2(1.5 + 0.5,4.75 + 7.75 × 0.5,7.75 + 9 × 0.5) 

= 𝑓1(2,8.625,12.25) 

= 6 × 𝑥 

= 6 × 2 

= 12 

𝑚(1) =
𝑚1(1) + 𝑚2(1)

2
=

7.75 + 12.25

2
= 10 

𝑚(2) =
𝑚1(2) + 𝑚2(2)

2
=

9 + 12

2
= 10.5 

𝑦(𝑥2) = 𝑦(2) = 𝑦(1) + 𝑚(1)ℎ = 4.75 + 10 × 0.5 = 9.75 

Which is greater than B=9, now let us have the third estimate of z(1)=M3 using 

the relationship  

𝑀3 = 𝑀2 −
𝐵2 − 𝐵

𝐵2 − 𝐵1
(𝑀2 − 𝑀1) 

𝑀3 = 4 −
9.75 − 9

9.75 − 7.75
(4 − 2) 

= 3.25 

The new estimate for z(1)=y’(1)=3.25 



150 
 

Iteration 1: 

h=0.5, x0=1, y(1)=y0=2, z(1)=z0=3.25 

 

 

𝑦𝑖+1 = 𝑦𝑖 + (
𝑚1 + 𝑚2

2
)ℎ 

𝑚1(1) = 𝑓1(𝑥0, 𝑦0, 𝑧0) = 𝑓1(1,2,3.25) = 𝑧0 = 3.25 

𝑚1(2) = 𝑓2(𝑥0, 𝑦0, 𝑧0) = 𝑓2(1,2,3.25) = 6𝑥0 = 6 × 1 = 6 

𝑚2(1) = 𝑓1(𝑥0 + ℎ, 𝑦0 + 𝑚1(1)ℎ, 𝑧0 + hm1(2)) 

= 𝑓1(1 + 0.5,2 + 3.25 × 0.5,3.25 + 6 × 0.5) 

= 𝑓1(1.5,3.625,6.25) 

= 6.25 

𝑚2(2) = 𝑓2(𝑥0 + ℎ, 𝑦0 + 𝑚1(1)ℎ, 𝑧0 + hm1(2)) 

= 𝑓2(1 + 0.5,2 + 3.25 × 0.5,3.25 + 6 × 0.5) 

= 𝑓1(1.5,3.625,6.25) 

= 6 × 𝑥 

= 6 × 1.5 

= 9 

 

𝑚(1) =
𝑚1(1) + 𝑚2(1)

2
=

3.25 + 6.25

2
= 4.75 

𝑚(2) =
𝑚1(2) + 𝑚2(2)

2
=

6 + 9

2
= 7.5 

 

𝑦(𝑥1) = 𝑦(1.5) = 𝑦(1) + 𝑚(1)ℎ = 2 + 4.75 × 0.5 = 4.375 



151 
 

𝑧(𝑥1) = 𝑧(1.5) = 𝑧(1) + 𝑚(2)ℎ = 3.25 + 7.5 × 0.5 = 7. 

 

iteration 2 : 

h=0.5,  x1=1.5,   y1=4.375,  z1=7 

𝑚1(1) = 𝑓1(𝑥1, 𝑦1, 𝑧1) = 𝑧1 = 7 

𝑚1(2) = 𝑓2(𝑥1, 𝑦1, 𝑧1) = 6𝑥1 = 6 × 1.5 = 9 

 

𝑚2(1) = 𝑓1(𝑥1 + ℎ, 𝑦1 + 𝑚1(1)ℎ, 𝑧1 + hm1(2)) 

= 𝑓1(1.5 + 0.5,4.375 + 7 × 0.5,7 + 9 × 0.5) 

= 𝑓1(2,7.875,11.5) 

= 11.5 

𝑚2(2) = 𝑓2(𝑥1 + ℎ, 𝑦1 + 𝑚1(1)ℎ, 𝑧1 + hm1(2)) 

= 𝑓2(1.5 + 0.5,4.375 + 7 × 0.5,7 + 9 × 0.5) 

= 𝑓1(2,7.875,11.5) 

= 6 × 𝑥 

= 6 × 2 

= 12 

𝑚(1) =
𝑚1(1) + 𝑚2(1)

2
=

7 + 11.5

2
= 9.25 

𝑚(2) =
𝑚1(2) + 𝑚2(2)

2
=

9 + 12

2
= 10.5 

𝑦(𝑥2) = 𝑦(2) = 𝑦(1) + 𝑚(1)ℎ = 4.375 + 9.25 × 0.5 = 9 

 

The solution is y(1)=2, y(1.5)=4.375, y(2)=9 the exact solution is 𝑦(𝑥) = 𝑥3 + 1 

and therefore y(1.5)=4.375 
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Practice : 

1. Solve 
𝑑𝑦

𝑑𝑥
= 1 − 𝑦, 𝑦(0) = 0 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 0 ≤ 𝑥 ≤ 0.3, using  

a. Euler’s method b. Heun’s method 

2. Solve 
𝑑𝑦

𝑑𝑥
= 𝑦 −

2𝑥

𝑦
, 𝑦(0) = 0 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 0 ≤ 𝑥 ≤ 0.2, using  

b. Euler’s method b. Heun’s method 

3. Using Runge Kutta method of fourth order solve for y(0.1), y(0.2) & y(0.3) 

given that 𝑦′ = 𝑥𝑦 + 𝑦2,y(0)=1 

4. Solve the following equation by Picard’s method 𝑦′(𝑥) = 𝑥2 + 𝑦2, 𝑦(0) =

0 estimate y(0.1),y(0.2) 

5. Applying shooting method to solve the boundary value problem, solve 

𝑦" = 𝑦(𝑥), 𝑦(0) = 0 𝑎𝑛𝑑 𝑦(1) = 1, i.e find 𝑦′(0) 
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Chapter 6: Solution of partial differential equations  

Many physical phenomena in applied science and engineering when formulated 

into mathematical models fall into a category of system known as partial 

differential equations. A partial differential equation is a differential equation 

involving more than one in independent variables. 

We can write a second order equation involving two independent variables in 

general form as : 

𝑎𝜕2𝑓

𝜕𝑥2
+

𝑏𝜕2𝑓

𝜕𝑥𝜕𝑦
+

𝑐𝜕2𝑓

𝜕𝑦2
= 𝐹(𝑥, 𝑦,

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
). . . . . . . . . . 1 

Where a,b,c may be constant or function of x & y 

The equation 1 is classified as  

i. Elliptical if 𝑏2 − 4𝑎𝑐 < 0 

ii. Parabolic if 𝑏2 − 4𝑎𝑐 = 0 

iii. Hyperbolic if 𝑏2 − 4𝑎𝑐 > 0 

Two approaches of solving PDEs are: 

1. Finite difference method (where regions are regular). 

2. Finite element method (where regions are irregular). 

Finite difference method: 

The finite difference method is based on the formula for approximating first and 

second order derivatives of a function. In this method derivatives that occurs in 

partial differential equation are replaced by their finite difference equivalents. 

The difference equation is then written for each grid points using function values 

at the surrounding grid points. Solving these equations simultaneously give the 

values of the function of each grid points. 
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Figure: two-dimensional finite difference grid 

𝑥𝑖+1 = 𝑥𝑖 + ℎ 

𝑦𝑖+1 = 𝑦𝑖 + ℎ 

We have already discussed that if the function f(x) has a continuous fourth 

derivative, then it’s first and second derivatives are given by the following central 

difference approximation. 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖 + ℎ) − 𝑓(𝑥𝑖 − ℎ)

2ℎ
 

  

𝑓′
𝑖
=

𝑓𝑖+1 − 𝑓𝑖−1

2ℎ
 . . . . . . . . . .2 

𝑓"(𝑥𝑖) =
𝑓(𝑥𝑖 + ℎ) − 2𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 − ℎ)

ℎ2
 

𝑓"
𝑖
=

𝑓𝑖+1−2𝑓𝑖 − 𝑓𝑖−1

ℎ2
 . . . . . . . . . .3 

The subscripts on f indicate the x value at which the function is evaluated. When 

f is a function of two variables x and y, the partial derivatives of f with respect x 

or y are the ordinary derivatives of f with respect to x or y when y or x does not 

change. We can use the equations 2 and 3 in the x direction to determine 
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derivatives with respect to x and in the y direction to determine derivatives with 

respect to y. thus we have  

𝜕𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑥
= 𝑓𝑥(𝑥𝑖 , 𝑦𝑗) =

𝑓(𝑥𝑖+1, 𝑦𝑗) − 𝑓(𝑥𝑖−1, 𝑦𝑗)

ℎ
 

𝜕𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑦
= 𝑓𝑦(𝑥𝑖 , 𝑦𝑗) =

𝑓(𝑥𝑖 , 𝑦𝑗+1) − 𝑓(𝑥𝑖 , 𝑦𝑗−1)

𝑘
 

𝜕2𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑥2
= 𝑓𝑥𝑥(𝑥𝑖 , 𝑦𝑗) =

𝑓(𝑥𝑖+1, 𝑦𝑗) − 2𝑓(𝑥𝑖 , 𝑦𝑗) + 𝑓(𝑥𝑖−1, 𝑦𝑗)

ℎ2
 

𝜕2𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑦2
= 𝑓𝑦𝑦(𝑥𝑖 , 𝑦𝑗) =

𝑓(𝑥𝑖 , 𝑦𝑗+1) − 2𝑓(𝑥𝑖 , 𝑦𝑗) + 𝑓(𝑥𝑖 , 𝑦𝑗−1)

𝑘2
 

𝜕2𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑥𝜕𝑦
=

𝑓(𝑥𝑖+1, 𝑦𝑗+1) − 𝑓(𝑥𝑖+1, 𝑦𝑗−1) − 𝑓(𝑥𝑖−1, 𝑦𝑗+1) + 𝑓(𝑥𝑖−1, 𝑦𝑗−1)

4ℎ𝑘
 

It would be convenient to use double subscripts i,j on f to indicate x and y values. 

Then above equation become  

𝑓𝑥,𝑖,𝑗 =
𝑓𝑖+1,𝑗  − 𝑓𝑖−1,𝑗

ℎ
 

𝑓𝑦,𝑖,𝑗 =
𝑓𝑖,𝑗+1  − 𝑓𝑖,𝑗−1

𝑘
 

𝑓𝑥𝑥,𝑖,𝑗 =
𝑓𝑖+1,𝑗  − 2𝑓𝑖,𝑗 + 𝑓𝑖−1,𝑗

ℎ2
 

𝑓𝑦𝑦,𝑖,𝑗 =
𝑓𝑖,𝑗+1  − 2𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1

𝑘2
 

𝑓𝑥𝑦,𝑖,𝑗 =
𝑓𝑖+1,𝑗+1  − 𝑓𝑖+1,𝑗−1 − 𝑓𝑖−1,𝑗+1 + 𝑓𝑖−1,𝑗−1

2ℎ𝑘
 

We will use these finite difference equivalents of the partial derivatives to 

construct various types of differential equations. 

Elliptical equations 

Elliptical equations are governed by condition on the boundary of closed domain. 

We consider here the two most commonly encountered elliptical equations. 

a. Laplace’s equation 
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b. Poisson’s equation 

 

Laplace’s equation 

Any equation of the form ∇2𝑓 = 0 is called laplace’s equation, where  

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 . . . . . 4 

∴  
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
= ∇2𝑓 = 0. . . . . .5 

 

Where a=1,b=0,c=1 and F(x,y,
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
)=0 

Where ∇2 is called Laplacian operator, above equation can be written as  

𝑈𝑥𝑥 + 𝑈𝑦𝑦 = 0 

Replacing the second order derivatives by their finite difference equivalents, at 

points (𝑥𝑖 , 𝑦𝑖) we get 

∇2𝑓𝑖𝑗 =
𝑓𝑖+1,𝑗 − 2𝑓𝑖𝑗 + 𝑓𝑖−1,𝑗

ℎ2
+

𝑓𝑖,𝑗+1 − 2𝑓𝑖𝑗 + 𝑓𝑖,𝑗−1

𝑘2
= 0. . . . . . 6 

If we assume for simplicity, h=k, then we get 

  

∇2𝑓𝑖𝑗 =
𝑓𝑖+1,𝑗 − 2𝑓𝑖𝑗 + 𝑓𝑖−1,𝑗

ℎ2
+

𝑓𝑖,𝑗+1 − 2𝑓𝑖𝑗 + 𝑓𝑖,𝑗−1

ℎ2
 

∇2𝑓𝑖𝑗 =
𝑓𝑖+1,𝑗  + 𝑓𝑖−1,𝑗  − 4𝑓𝑖𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1

ℎ2
. . . . . . . 7 

𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗 − 4𝑓𝑖𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 = 0 

This is called Laplace’s equation 

 

Above equation contains four neighboring points around central points (𝑥𝑖, 𝑦𝑖) as 

shown in figure, the above equation is known as five point difference formula for 

Laplace’s equation. 
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figure: Grid for Laplace equation 

we can also represent the relationship of pivotal values pictorially as below. 

∇2𝑓𝑖𝑗 =
1

ℎ2
{1

1
−4
1

1} 𝑓𝑖𝑗 = 0 . . . . . . . 8 

From above equation we can show that the function value at grid point(𝑥𝑖 , 𝑦𝑖) is 

the average of the values at the four adjoining points. i.e 

𝑓𝑖𝑗 =
1

4
(𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗+𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1). . . . . . . . 9    

To evaluate numerically the solution of Laplace equation at the grid points we 

can apply equation 9 at the grid points where 𝑓𝑖𝑗 is required thus obtaining a 

system of linear equations in the pivotal values of  𝑓𝑖𝑗. The system of linear 

equations may be solved using either direct or iterative methods. 

Example: Consider a steel plate of size 15cm x 15cm, if two of the sides are held 

at 100oc and other two sides are held at 0oc, what are the steady state temperatures 

at interior points assuming a grid of size 5cm x 5cm. 

Note: A problem with values known on each boundary is said to have Dirichlet 

boundary condition. This problem is illustrated below.  
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The system of equation is as follows: 

Point 1: 

100 + 100 + 𝑓3 + 𝑓2 − 4𝑓1 = 0…… . .1 

Point 2: 

𝑓1 + 100 + 𝑓4 + 0 − 4𝑓2 = 0. . . . . . . .2 

Point 3: 

100 + 𝑓1 + 0 + 𝑓4 − 4𝑓3 = 0. . . . . . . .3 

Point 4: 

𝑓3 + 𝑓2 + 0 + 0 − 4𝑓4 = 0. . . . . . . .4 

On solving above four equations we get the values as: 

𝑓1 = 75, 𝑓2 = 50, 𝑓3 = 50, 𝑓4 = 25 

So we can see the interior temperature points as above. 

Note: for solving use any iterative methods that you have learned in chapter 4. 
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Poisson’s equation  

If we put a=1, b=0, c=1 in the equation and F(x,y,f,𝑓𝑥, 𝑓𝑦)=g(x,y) then 

𝑎𝜕2𝑓

𝜕𝑥2
+

𝑏𝜕2𝑓

𝜕𝑥𝜕𝑦
+

𝑐𝜕2𝑓

𝜕𝑦2
= 𝐹 (𝑥, 𝑦,

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
) 

We get 

𝜕2𝑓

𝜕𝑥2
+

𝑐𝜕2𝑓

𝜕𝑦2
= 𝑔(𝑥, 𝑦) 

∇2𝑓 = 𝑔(𝑥, 𝑦)…… . . 𝑎 

The above equation a is called poisson’s equation using the notation 𝑔𝑖𝑗 =

𝑔(𝑥𝑖 , 𝑦𝑖) and laplace equation may be modified to solve the equation a. the finite 

difference formula for solving poisson’s equation then takes of the form 

𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 − 4𝑓𝑖𝑗 = ℎ2𝑔𝑖𝑗  …… . . 𝑏 

Example: Solve the poisson’s equation ∇2𝑓 = 2𝑥2𝑦2 over the square domain 0 ≤

𝑥 ≤ 3 & 0 ≤ 𝑦 ≤ 3 with f=0 on the boundary and h=1. 

The domain is divided into squares of one unit size as in figure. 
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By applying equations b at each grid points 

 

Point 1: 

0 + 0 + 𝑓3 + 𝑓2 − 4𝑓1 = 12𝑔(1,2) 

𝑓2+𝑓3 − 4𝑓1 = 2𝑥12𝑥22 

𝑓2+𝑓3 − 4𝑓1 = 8 . . . . . . . . 1 

 

Point 2: 

𝑓1 + 0 + 0 + 𝑓4 − 4𝑓2 = 12𝑔(2,2) 

𝑓1+𝑓4 − 4𝑓2 = 2𝑥22𝑥22 

𝑓1 − 4𝑓2 + 𝑓4 = 32 . . . . . . . . 2 

Point 3: 

 

0 + 𝑓1 + 0 + 𝑓4 − 4𝑓3 = 12𝑔(1,1) 

𝑓1+𝑓4 − 4𝑓3 = 2𝑥12𝑥12 

𝑓1 − 4𝑓3 + 𝑓4 = 2 . . . . . . . . 3 

Point 4: 

𝑓3 + 𝑓2 + 0 + 0 − 4𝑓4 = 12𝑔(2,1) 

𝑓2+𝑓3 − 4𝑓4 = 2𝑥22 

𝑓2 + 𝑓3 − 4𝑓4 = 8 . . . . . . . . 4 

On solving we get  

𝑓1 = −
22

4
, 𝑓2 = −

43

4
, 𝑓3 = −

13

4
, 𝑓4 = −

22

4
 

Therefore the interior points are as above. 
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Note: we can use any problem-solving methods already discussed for solving the 

values of fi 

Parabolic equations  

Elliptical equations studies previously described problems that are time 

independent, such problems are known as steady state problems, but we come 

across problems that are not steady state. This means that the function is 

dependent on both space and time. Parabolic equations for which 𝑏2 − 4𝑎𝑐 = 0, 

describes the problem that depend on space and time variables. 

A popular case for parabolic type of equation is the study of heat flow in one-

dimensional direction in an insulated rod, such problems are governed by both 

boundary and initial conditions. 

 

Figure : heat flow in a rod 

Let f represent the temperature at any points in rod, whose distance from left end 

is x. Heat is flowing from left to right under the influence of temperature gradient. 

The temperature f(x,t) in the at position x and time t governed by the heat 

equation.  

𝑘1

𝜕𝑓

𝜕𝑥2
= 𝑘2𝑘3

𝜕𝑓

𝜕𝑡
…… . . 𝑎 

Where 𝑘1is coefficient of thermal conductivity, 𝑘2 is the specific heat and 𝑘3 is 

density of the material. 

Equation a can be simplified as 

𝑘𝑓𝑥𝑥(𝑥, 𝑡) = 𝑓𝑡(𝑥, 𝑡)…… . 𝑏 
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Where 𝑘 =
𝑘1

𝑘2𝑘3
 

The initial condition will be the initial temperatures at all points along the rod . 

𝑓(𝑥, 0) = 𝑓(𝑥) 0 ≤ 𝑥 ≤ 𝐿 

The boundary conditions f(0,t) and f(L,t) describes the temperature at each end 

of the rod as function of time, if they are held at  constant then 

 𝑓(0, 𝑡) = 𝑐10 ≤ 𝑡 ≤ ∞ 

𝑓(𝐿, 𝑡) = 𝑐2 0 ≤ 𝑡 ≤ ∞ 

solution of heat equation 

we can solve the heat equation in equation using the finite difference formula 

given below. 

𝑓𝑡(𝑥, 𝑡) =
𝑓(𝑥, 𝑡 + 𝜏) − 𝑓(𝑥, 𝑡)

𝜏
 

=
1

𝜏
(𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗)…… . 𝑐 

𝑓𝑥𝑥(𝑥, 𝑡) =
𝑓(𝑥 − ℎ, 𝑡) − 2𝑓(𝑥, 𝑡) + 𝑓(𝑥 + ℎ, 𝑡)

ℎ2
 

=
1

ℎ2
(𝑓𝑖−1,𝑗 − 2𝑓𝑖,𝑗+𝑓𝑖+1,𝑗)……𝑑 

Substituting c and d in equation b we can obtain 

1

𝜏
(𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗) =

𝑘

ℎ2
(𝑓𝑖−1,𝑗 − 2𝑓𝑖𝑗 + 2𝑓𝑖+1,𝑗)……𝑒 

Solving for 𝑓𝑖,𝑗+1 

𝑓𝑖,𝑗+1 = (1 −
2𝜏𝑘

ℎ2
) 𝑓𝑖𝑗 +

𝜏𝑘

ℎ2
(𝑓𝑖−1,𝑗 + 𝑓𝑖+1,𝑗)

= (1 − 2𝛾)𝑓𝑖𝑗 + 𝛾(𝑓𝑖−1,𝑗 + 𝑓𝑖+1,𝑗)… . . 𝑓 

Where 𝛾 =
𝜏𝑘

ℎ2
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Bender Schmidt method 

The recurrence of equation allows us to evaluate f at each point x and at any point 

t. if we choose step size ∆𝑡 & ∆𝑥, such that 

1 − 2𝛾 = 1 −
2𝜏𝑘

ℎ2
= 0 ……𝑔 

Equation f simplifies to  

𝑓𝑖,𝑗+1 =
1

2
(𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗)…… . ℎ 

Equation h is known as Bender Schmidt recurrence equation. This equation 

determines the value of f at 𝑥 = 𝑥𝑖, at time 𝑡 = 𝑡𝑖 + 𝜏 as the average of the values 

right and left of 𝑥𝑖 at time 𝑡𝑗 . 

Note that the step size in ∆𝑡  obtained from equation g. 

𝜏 =
ℎ2

2𝑘
 

Gives the equation h , equation f is stable if and only if the we step size 𝜏 satisfies 

the condition  

𝜏 ≤
ℎ2

2𝑘
 

Example : Solve the parabolic equation 2𝑓𝑥𝑥(𝑥, 𝑡) = 𝑓𝑡(𝑥, 𝑡) ,  given the initial 

condition 

𝑓(𝑥, 0) = 50(4 − 𝑥)  0 ≤ 𝑥 ≤ 4 

And boundary conditions 

𝑓(0, 𝑡) = 0   

𝑓(4, 𝑡) = 0,    0 ≤ 𝑡 ≤ 1.5 

Solution 

If we assume ∆𝑥 = ℎ = 1, ∆𝑡 = 𝜏 (using Bender Schmidt method) 

𝜏 ≤
ℎ2

2𝑘
=

12

2𝑥2
= 0.25 
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Taking 𝜏 = 0.25,  we have 

𝑓𝑖,𝑗+1 =
1

2
(𝑓𝑖−1,𝑗 + 𝑓𝑖+1,𝑗) 

From the initial boundary condition :  𝑓(0, 𝑡) = 0 or, f(0,j) =0 for all values of j. 

i.e.  𝑓(0,0) = 0 

      𝑓(0,1) = 0 

      𝑓(0,2) = 0 

      𝑓(0,3) = 0 

      𝑓(0,4) = 0 

      𝑓(0,5) = 0 

      𝑓(0,6) = 0 

From the final boundary condition: 𝑓(4, 𝑡) = 0 or 𝑓(4, 𝑗) = 0 for all values of j. 

𝑓(4,0) = 0 

                                                       𝑓(4,1) = 0 

                                                       𝑓(4,2) = 0 

                                                      𝑓(4,3) = 0      

                                                      𝑓(4,4) = 0 

Now, again from the given initial condition: 

𝑓(𝑥, 0) = 50(4 − 𝑥) 

                                               Or, 𝑓(𝑖, 0) = 50(4 − 𝑖) for all values of i. 

                                                 

                                                   𝑓(1,0) = 50(4 − 1)=150 

       

                                                  𝑓(2,0) = 50(4 − 2)=100 

                                                 

                                                 𝑓(3,0) = 50(4 − 3)=50 
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Now, again from Bender Schmidt recursive formula, 

                                 

𝑓𝑖,𝑗+1 =
1

2
(𝑓𝑖−1,𝑗 + 𝑓𝑖+1,𝑗)  ………(A) 

Put j=0 in (A) we get, 

𝑓𝑖,1 =
1

2
(𝑓𝑖−1,0 + 𝑓𝑖+1,0)………..(B) 

Put i=1, 2, 3 respectively in (B) we get, 

𝑓1,1 =
1

2
(𝑓0,0 + 𝑓2,0)=

1

2
(0 + 100)=50 

𝑓2,1 =
1

2
(𝑓1,0 + 𝑓3,0)=

1

2
(150 + 50)=100 

𝑓3,1 =
1

2
(𝑓2,0 + 𝑓4,0)=

1

2
(100 + 0)=50 

Again take j=1 and i= 1.2, 3 respectively to find 𝑓1,2  𝑓2,2𝑓3,2 and take j=2, j=3, 

j=4 and j=6 and find the corresponding values for i=1, i=2 and i=3 for each ‘j’ . 

                                                                                    

Using the formula we can generate successfully f(x,t). the estimated are recorded 

in the following table at each interior point, the temperature at any single point is 

just average of the values at the adjacent points of the previous points. 

            x       

t                 

0  (i=0) 1(i=1) 2 (i=2) 3(i=3) 4(i=4) 

0.00(j=0) 0 150 100 50 0 

0.25 (j=1) 0 50(f1,1) 100(f2.1) 50(f3,1) 0 

0.50(j=2) 0 50 50 50 0 

0.75 (j=3) 0 25 50 25 0 

1.00(j=4) 0 25 25 25 0 

Hyperbolic equation 

Hyperbolic equation models the vibration of structure such as building beams and 

machines we here consider the case of a vibrating string that is fixed at both the 

ends as figure. 
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The lateral displacement of string f varies with time t and distance x along the 

string. The displacement f(x,t) is governed by the wave equation 

𝑇
𝜕2𝑓

𝜕𝑥2
= 𝜌

𝜕2𝑓

𝜕𝑡2
 

Where T is the tension in the string and ρ is the mass per unit length. 

Hyperbolic problems are governed by both boundary and initial conditions, if 

time is one of the independent variables. Two boundary conditions are the 

vibrating string problems under consideration are 

𝑓(0, 𝑡) = 0,     0 ≤ 𝑡 ≤ 𝑏 

𝑓(𝐿, 𝑡) = 0,    0 ≤ 𝑡 ≤ 𝑏 

Two initial conditions are:  

𝑓(𝑥, 0) = 𝑓(𝑥), 0 ≤ 𝑡 ≤ 𝛼 

𝑓𝑡(𝑥, 0) = 𝑔(𝑥), 0 ≤ 𝑡 ≤ 𝑎 

Solution hyperbolic equations 

The domain of interest 0 ≤ 𝑡 ≤ 𝑎 𝑎𝑛𝑑 0 ≤ 𝑡 ≤ 𝑏 is partitioned as shown in 

figure, the rectangle size is ∆𝑥 = ℎ, ∆𝑡 = 𝜏 
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Figure : Grid for solving hyperbolic equation 

The difference equation for 𝑓𝑥𝑥(𝑥, 𝑡) 𝑎𝑛𝑑  𝑓𝑡𝑡(𝑥, 𝑡)  are 

 

𝑓𝑥𝑥(𝑥, 𝑡) =
𝑓(𝑥 − ℎ, 𝑡) − 2𝑓(𝑥, 𝑡) + 𝑓(𝑥 + ℎ, 𝑡)

ℎ2
 

𝑓𝑡𝑡(𝑥, 𝑡) =
𝑓(𝑥, 𝑡 − 𝜏) − 2𝑓(𝑥, 𝑡) + 𝑓(𝑥, 𝑡 + 𝜏)

𝜏2
 

This implies that 

𝑇
𝑓𝑖−1,𝑗 − 2𝑓𝑖𝑗 + 𝑓𝑖+1,𝑗

ℎ2
= 𝜌

𝑓𝑖,𝑗−1 − 2𝑓𝑖𝑗 + 𝑓𝑖,𝑗+1

𝜏2
 

Solving this for 𝑓𝑖,𝑗+1, we obtain  

𝑓𝑖,𝑗+1 = −𝑓𝑖,𝑗−1 + 2(1 −
𝑇𝜏2

𝜌ℎ2
)𝑓𝑖𝑗 +

𝑇𝜏2

𝜌ℎ2
(𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗) 

If we make 1 −
𝑇𝜏2

𝜌ℎ2
= 0 

Then we have 

𝑓𝑖,𝑗+1 = −𝑓𝑖,𝑗−1 + 𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗  ………𝑑 
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The values of f at 𝑥 = 𝑥𝑖 and 𝑡 = 𝑡𝑗 + 𝜏 is equal to the um of the values of f, at 

the point 𝑥 = 𝑥𝑖 − ℎ and 𝑥 = 𝑥𝑖 + ℎ at the time 𝑡 = 𝑡𝑗(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒) minus 

the value of f at 𝑥 = 𝑥𝑖 at time 𝑡 = 𝑡𝑗 − 𝜏. From figure we can say 𝑓𝐴 = 𝑓𝐵 +

𝑓𝐷 − 𝑓𝐶  

Starting values  

We need two rows of starting values, corresponding to j=1 and j=2, in order to 

computer the values of the third row. First row is obtained using the condition. 

𝑓(𝑥, 0) = 𝑓(𝑥) 

The 2nd row can be obtained using the 2nd initial condition as 𝑓𝑡(𝑥, 0) = 𝑔(𝑥) 

 

We know that  

𝑓𝑡(𝑥, 0) =
𝑓𝑖,0+1 − 𝑓𝑖,0−1

2𝜏
= 𝑔𝑖 

𝑓𝑖,−1 = 𝑓𝑖,1 − 2𝜏𝑔𝑖  𝑓𝑜𝑟 𝑡 = 0 𝑜𝑛𝑙𝑦 

Substituting this in equation d, we get for 𝑡 = 𝑡1 

𝑓𝑖,1 =
1

2
(𝑓𝑖+1,0 + 𝑓𝑖−1,0) + 𝜏𝑔𝑖 …… . 𝑒 

In many cases 𝑔(𝑥𝑖) = 0 then we have 

𝑓𝑖,1 =
1

2
(𝑓𝑖+1,0 + 𝑓𝑖−1,0) 

 

 

 

Example: Solve numerically the wave equation 

𝑓𝑡𝑡(𝑥, 𝑡) = 4𝑓𝑥𝑥(𝑥, 𝑡)0 ≤ 𝑥 ≤ 5 & 0 ≤ 𝑡 ≤ 2.5 

With boundary condition 

𝑓(0, 𝑡) = 0  𝑎𝑛𝑑𝑓(5, 𝑡) = 0 
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And initial values  

𝑓(𝑥, 0) = 𝑓(𝑥) = 𝑥(5 − 𝑥) 

𝑓𝑡(𝑥, 0) = 𝑔(𝑥) = 0 

Solution 

Let h=1 

Given 
𝑇

𝜌
= 4 

Assuming 1 − 4
𝜏2

12
= 0  

We get 

𝜏 =
1

2
 

The values estimated using equations d and e 

               

x 

t 

0 1 2 3 4 5 

0.0 0 4 6 6 4 0 

0.5 0 3 * 5 ** 5 3 0 

1.0 0 1 2 2 1 0 

1.5 0 -1*** -2 -2 -1 0 

2.0 0 -3 -5 -5 -3 0 

2.5 0 -4 -6 -6 -4 0 

 

∗=
0+6

2
   ∗∗=

4+6

2
   ∗∗∗= 2 + 0 − 3 
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Chapter 6: Solution of partial differential equations  

Many physical phenomena in applied science and engineering when formulated 

into mathematical models fall into a category of system known as partial 

differential equations. A partial differential equation is a differential equation 

involving more than one in independent variables. 

We can write a second order equation involving two independent variables in 

general form as : 

𝑎𝜕2𝑓

𝜕𝑥2
+

𝑏𝜕2𝑓

𝜕𝑥𝜕𝑦
+

𝑐𝜕2𝑓

𝜕𝑦2
= 𝐹(𝑥, 𝑦,

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
). . . . . . . . . . 1 

Where a,b,c may be constant or function of x & y 

The equation 1 is classified as  

iv. Elliptical if 𝑏2 − 4𝑎𝑐 < 0 

v. Parabolic if 𝑏2 − 4𝑎𝑐 = 0 

vi. Hyperbolic if 𝑏2 − 4𝑎𝑐 > 0 

Two approaches of solving are 

3. Finite difference method (where regions are regular) 

4. Finite element method (where regions are irregular) 

Finite difference method 

The finite difference method is based on the formula for approximating first and 

second order derivatives of a function. In this method derivatives that occurs in 

partial differential equation are replaced by their finite difference equivalents. 

The difference equation is then written for each grid points using function values 

at the surrounding grid points. Solving these equations simultaneously give the 

values of the function of each grid points. 
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Figure: two-dimensional finite difference grid 

𝑥𝑖+1 = 𝑥𝑖 + ℎ 

𝑦𝑖+1 = 𝑦𝑖 + ℎ 

We have already discussed that if the function f(x) has a continuous fourth 

derivative, then it’s first and second derivatives are given by the following central 

difference approximation. 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖 + ℎ) − 𝑓(𝑥𝑖 − ℎ)

2ℎ
 

  

𝑓′
𝑖
=

𝑓𝑖+1 − 𝑓𝑖−1

2ℎ
 . . . . . . . . . .2 

𝑓"(𝑥𝑖) =
𝑓(𝑥𝑖 + ℎ) − 2𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 − ℎ)

ℎ2
 

𝑓"
𝑖
=

𝑓𝑖+1−2𝑓𝑖 − 𝑓𝑖−1

ℎ2
 . . . . . . . . . .3 

The subscripts on f indicate the x value at which the function is evaluated. When 

f is a function of two variables x and y, the partial derivatives of f with respect x 

or y are the ordinary derivatives of f with respect to x or y when y or x does not 

change. We can use the equations 2 and 3 in the x direction to determine 
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derivatives with respect to x and in the y direction to determine derivatives with 

respect to y. thus we have  

𝜕𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑥
= 𝑓𝑥(𝑥𝑖 , 𝑦𝑗) =

𝑓(𝑥𝑖+1, 𝑦𝑗) − 𝑓(𝑥𝑖−1, 𝑦𝑗)

2ℎ
 

𝜕𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑦
= 𝑓𝑦(𝑥𝑖 , 𝑦𝑗) =

𝑓(𝑥𝑖 , 𝑦𝑗+1) − 𝑓(𝑥𝑖 , 𝑦𝑗−1)

2𝑘
 

𝜕2𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑥2
= 𝑓𝑥𝑥(𝑥𝑖 , 𝑦𝑗) =

𝑓(𝑥𝑖+1, 𝑦𝑗) − 2𝑓(𝑥𝑖 , 𝑦𝑗) + 𝑓(𝑥𝑖−1, 𝑦𝑗)

ℎ2
 

𝜕2𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑦2
= 𝑓𝑦𝑦(𝑥𝑖 , 𝑦𝑗) =

𝑓(𝑥𝑖 , 𝑦𝑗+1) − 2𝑓(𝑥𝑖 , 𝑦𝑗) + 𝑓(𝑥𝑖 , 𝑦𝑗−1)

𝑘2
 

𝜕2𝑓(𝑥𝑖 , 𝑦𝑗)

𝜕𝑥𝜕𝑦
=

𝑓(𝑥𝑖+1, 𝑦𝑗+1) − 𝑓(𝑥𝑖+1, 𝑦𝑗−1) − 𝑓(𝑥𝑖−1, 𝑦𝑗+1) + 𝑓(𝑥𝑖−1, 𝑦𝑗−1)

4ℎ𝑘
 

It would be convenient to use double subscripts i,j on f to indicate x and y values. 

Then above equation become  

𝑓𝑥,𝑖,𝑗 =
𝑓𝑖+1,𝑗  − 𝑓𝑖−1,𝑗

ℎ
 

𝑓𝑦,𝑖,𝑗 =
𝑓𝑖,𝑗+1  − 𝑓𝑖,𝑗−1

𝑘
 

𝑓𝑥𝑥,𝑖,𝑗 =
𝑓𝑖+1,𝑗  − 2𝑓𝑖,𝑗 + 𝑓𝑖−1,𝑗

ℎ2
 

𝑓𝑦𝑦,𝑖,𝑗 =
𝑓𝑖,𝑗+1  − 2𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1

𝑘2
 

𝑓𝑥𝑦,𝑖,𝑗 =
𝑓𝑖+1,𝑗+1  − 𝑓𝑖+1,𝑗−1 − 𝑓𝑖−1,𝑗+1 + 𝑓𝑖−1,𝑗−1

2ℎ𝑘
 

We will use these finite difference equivalents of the partial derivatives to 

construct various types of differential equations. 

Elliptical equations 

Elliptical equations are governed by condition on the boundary of closed domain. 

We consider here the two most commonly encountered elliptical equations. 

c. Laplace’s equation 
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d. Poisson’s equation 

 

Laplace’s equation 

Any equation of the form ∇2𝑓 = 0 is called laplace’s equation, where  

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 . . . . . 4 

∴  
𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
= ∇2𝑓 = 0. . . . . .5 

 

Where a=1,b=0,c=1 and F(x,y,
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
)=0 

Where ∇2 is called Laplacian operator, above equation can be written as  

𝑈𝑥𝑥 + 𝑈𝑦𝑦 = 0 

Replacing the second order derivatives by their finite difference equivalents, at 

points (𝑥𝑖 , 𝑦𝑖) we get 

∇2𝑓𝑖𝑗 =
𝑓𝑖+1,𝑗 − 2𝑓𝑖𝑗 + 𝑓𝑖−1,𝑗

ℎ2
+

𝑓𝑖,𝑗+1 − 2𝑓𝑖𝑗 + 𝑓𝑖,𝑗−1

𝑘2
= 0. . . . . . 6 

If we assume for simplicity, h=k, then we get 

  

∇2𝑓𝑖𝑗 =
𝑓𝑖+1,𝑗 − 2𝑓𝑖𝑗 + 𝑓𝑖−1,𝑗

ℎ2
+

𝑓𝑖,𝑗+1 − 2𝑓𝑖𝑗 + 𝑓𝑖,𝑗−1

ℎ2
 

∇2𝑓𝑖𝑗 =
𝑓𝑖+1,𝑗  + 𝑓𝑖−1,𝑗  − 4𝑓𝑖𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1

ℎ2
. . . . . . . 7 

𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗 − 4𝑓𝑖𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 = 0 

This is called Laplace’s equation 

 

Above equation contains four neighboring points around central points (𝑥𝑖, 𝑦𝑖) as 

shown in figure, the above equation is known as five point difference formula for 

Laplace’s equation. 
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figure: Grid for Laplace equation 

we can also represent the relationship of pivotal values as, 

∇2𝑓𝑖𝑗 =
1

ℎ2
{1

1
−4
1

1} 𝑓𝑖𝑗 = 0 . . . . . . . 8 

From above equation we can show that the function value at grid point(𝑥𝑖 , 𝑦𝑖) is 

the average of the values at the four adjoining points. i.e 

𝑓𝑖𝑗 =
1

4
(𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗+𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1). . . . . . . . 9    

To evaluate numerically the solution of Laplace equation at the grid points we 

can apply equation 9 at the grid points where 𝑓𝑖𝑗 is required thus obtaining a 

system of linear equations in the pivotal values of  𝑓𝑖𝑗. The system of linear 

equations may be solved using either direct or iterative methods. 

Example: Consider a steel plate of size 15cm x 15cm, if two of the sides are held 

at 100oc and the other two sides are held at 0oc. What are the steady state 

temperatures at interior points(nodes) assuming a grid of 5cm x 5cm. 

Note: a problem with values known on each boundary is said to have Dirichlet 

boundary condition. This problem is illustrated below.  
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The system of equation is as follows 

Point 1: 

100 + 100 + 𝑓3 + 𝑓2 − 4𝑓1 = 0…… . .1 

Point 2: 

𝑓1 + 100 + 𝑓4 + 0 − 4𝑓2 = 0. . . . . . . .2 

Point 3: 

100 + 𝑓1 + 0 + 𝑓4 − 4𝑓3 = 0. . . . . . . .3 

Point 4: 

𝑓3 + 𝑓2 + 0 + 0 − 4𝑓4 = 0. . . . . . . .4 

On solving above four equations we get the values as: 

𝑓1 = 75, 𝑓2 = 50, 𝑓3 = 50, 𝑓4 = 25 

So we can see the interior temperature points as above. 

Note: for solving use any methods that have learned in before chapters. 
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Poisson’s equation  

If we put a=1, b=0, c=1 in the equation and F(x,y,f,𝑓𝑥, 𝑓𝑦)=g(x,y) then 

𝑎𝜕2𝑓

𝜕𝑥2
+

𝑏𝜕2𝑓

𝜕𝑥𝜕𝑦
+

𝑐𝜕2𝑓

𝜕𝑦2
= 𝐹 (𝑥, 𝑦,

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
) 

We get 

𝜕2𝑓

𝜕𝑥2
+

𝑐𝜕2𝑓

𝜕𝑦2
= 𝑔(𝑥, 𝑦) 

∇2𝑓 = 𝑔(𝑥, 𝑦)…… . . 𝑎 

The above equation a is called poisson’s equation using the notation 𝑔𝑖𝑗 =

𝑔(𝑥𝑖 , 𝑦𝑖) and laplace equation may be modified to solve the equation a. the finite 

difference formula for solving poisson’s equation then takes of the form 

𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗+1 + 𝑓𝑖,𝑗−1 − 4𝑓𝑖𝑗 = ℎ2𝑔𝑖𝑗  …… . . 𝑏 

Example: Solve the poisson’s equation ∇2𝑓 = 2𝑥2𝑦2 over the square domain 0 ≤

𝑥 ≤ 3 & 0 ≤ 𝑦 ≤ 3 with f=0 on the boundary and h=1. 

The domain is divided into squares of one unit size as in figure. 
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By applying equations b at each grid points 

 

Point 1: 

0 + 0 + 𝑓3 + 𝑓2 − 4𝑓1 = 12𝑔(1,2) 

𝑓2+𝑓3 − 4𝑓1 = 2𝑥12𝑥22 

𝑓2+𝑓3 − 4𝑓1 = 8 . . . . . . . . 1 

 

Point 2: 

𝑓1 + 0 + 0 + 𝑓4 − 4𝑓2 = 12𝑔(2,2) 

𝑓1+𝑓4 − 4𝑓2 = 2𝑥22𝑥22 

𝑓1 − 4𝑓2 + 𝑓4 = 32 . . . . . . . . 2 

Point 3: 

 

0 + 𝑓1 + 0 + 𝑓4 − 4𝑓3 = 12𝑔(1,1) 

𝑓1+𝑓4 − 4𝑓3 = 2𝑥12𝑥12 

𝑓1 − 4𝑓3 + 𝑓4 = 2 . . . . . . . . 3 

Point 4: 

𝑓3 + 𝑓2 + 0 + 0 − 4𝑓4 = 12𝑔(2,1) 

𝑓2+𝑓3 − 4𝑓4 = 2𝑥22 

𝑓2 + 𝑓3 − 4𝑓4 = 8 . . . . . . . . 4 

On solving we get  

𝑓1 = −
22

4
, 𝑓2 = −

43

4
, 𝑓3 = −

13

4
, 𝑓4 = −

22

4
 

Therefore the interior points are as above. 
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Note: we can use any problem-solving methods already discussed for solving the 

values of fi 

Parabolic equations  

Elliptical equations studies previously described problems that are time 

independent, such problems are known as steady state problems, but we come 

across problems that are not steady state. This means that the function is 

dependent on both space and time. Parabolic equations for which 𝑏2 − 4𝑎𝑐 = 0, 

describes the problem that depend on space and time variables. 

A popular case for parabolic type of equation is the study of heat flow in one-

dimensional direction in an insulated rod, such problems are governed by both 

boundary and initial conditions. 

 

Figure : heat flow in a rod 

Let f represent the temperature at any points in rod, whose distance from left end 

is x. Heat is flowing from left to right under the influence of temperature gradient. 

The temperature f(x,t) in the at position x and time t governed by the heat 

equation.  

𝑘1

𝜕𝑓

𝜕𝑥2
= 𝑘2𝑘3

𝜕𝑓

𝜕𝑡
…… . . 𝑎 

Where 𝑘1is coefficient of thermal conductivity, 𝑘2 is the specific heat and 𝑘3 is 

density of the material. 

Equation a can be simplified as 

𝑘𝑓𝑥𝑥(𝑥, 𝑡) = 𝑓𝑡(𝑥, 𝑡)…… . 𝑏 
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Where 𝑘 =
𝑘1

𝑘2𝑘3
 

The initial condition will be the initial temperatures at all points along the rod . 

𝑓(𝑥, 0) = 𝑓(𝑥) 0 ≤ 𝑥 ≤ 𝐿 

The boundary conditions f(0,t) and f(L,t) describes the temperature at each end 

of the rod as function of time, if they are held at  constant then 

 𝑓(0, 𝑡) = 𝑐10 ≤ 𝑡 ≤ ∞ 

𝑓(𝐿, 𝑡) = 𝑐2 0 ≤ 𝑡 ≤ ∞ 

solution of heat equation 

we can solve the heat equation in equation using the finite difference formula 

given below. 

𝑓𝑡(𝑥, 𝑡) =
𝑓(𝑥, 𝑡 + 𝜏) − 𝑓(𝑥, 𝑡)

𝜏
 

=
1

𝜏
(𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗)…… . 𝑐 

𝑓𝑥𝑥(𝑥, 𝑡) =
𝑓(𝑥 − ℎ, 𝑡) − 2𝑓(𝑥, 𝑡) + 𝑓(𝑥 + ℎ, 𝑡)

ℎ2
 

=
1

ℎ2
(𝑓𝑖−1,𝑗 − 2𝑓𝑖,𝑗+𝑓𝑖+1,𝑗)……𝑑 

Substituting c and d in equation b we can obtain 

1

𝜏
(𝑓𝑖,𝑗+1 − 𝑓𝑖,𝑗) =

𝑘

ℎ2
(𝑓𝑖−1,𝑗 − 2𝑓𝑖𝑗 + 2𝑓𝑖+1,𝑗)……𝑒 

Solving for 𝑓𝑖,𝑗+1 

𝑓𝑖,𝑗+1 = (1 −
2𝜏𝑘

ℎ2
) 𝑓𝑖𝑗 +

𝜏𝑘

ℎ2
(𝑓𝑖−1,𝑗 + 𝑓𝑖+1,𝑗)

= (1 − 2𝛾)𝑓𝑖𝑗 + 𝛾(𝑓𝑖−1,𝑗 + 𝑓𝑖+1,𝑗)… . . 𝑓 

Where 𝛾 =
𝜏𝑘

ℎ2
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Bender Schmidt method 

The recurrence of equation allows us to evaluate f at each point x and at any point 

t. if we choose step size ∆𝑡 & ∆𝑥, such that 

1 − 2𝛾 = 1 −
2𝜏𝑘

ℎ2
= 0 ……𝑔 

Equation f simplifies to  

𝑓𝑖,𝑗+1 =
1

2
(𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗)…… . ℎ 

Equation h is known as Bender Schmidt recurrence equation. This equation 

determines the value of f at 𝑥 = 𝑥𝑖, at time 𝑡 = 𝑡𝑖 + 𝜏 as the average of the values 

right and left of 𝑥𝑖 at time 𝑡𝑗 . 

Note that the step size in ∆𝑡  obtained from equation g. 

𝜏 =
ℎ2

2𝑘
 

Gives the equation h , equation f is stable if and only if the we step size 𝜏 satisfies 

the condition  

𝜏 ≤
ℎ2

2𝑘
 

Example: Solve the equation 2𝑓𝑥𝑥(𝑥, 𝑡) = 𝑓𝑡(𝑥, 𝑡)   𝑎𝑛𝑑  given the initial 

condition: 

𝑓(𝑥, 0) = 50(4 − 𝑥)   0 ≤ 𝑥 ≤ 4 

And boundary conditions: 

𝑓(0, 𝑡) = 0,      

𝑓(4, 𝑡) = 𝑡 + 1,    0 ≤ 𝑡 ≤ 1.5 

Solution 

If we assume ∆𝑥 = ℎ = 1, ∆𝑡 = 𝜏 (using Bender Schmidt method) 

𝜏 ≤
ℎ2

2𝑘
=

12

2𝑥2
= 0.25 
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Taking 𝜏 = 0.25,  we have 

𝑓𝑖,𝑗+1 =
1

2
(𝑓𝑖−1,𝑗 + 𝑓𝑖+1,𝑗) 

Using the formula we can generate successfully f(x,t). the estimated are recorded 

in the following table at each interior point, the temperature at any single point is 

just average of the values at the adjacent points of the previous points. 

         X(i)          

t  (j)               

0   1 2 3 4 

0.00(0) 0 150 100 50 0 

0.25(1) 0 50(f1,1) 100 50 0 

0.50(2) 0 50 50 50 0 

0.75 0 25 25 25 0 

1.00 0 12.5 25 12.5 0 

1.25 0 12.5 12.5 12.5 0 

1.50 0 6.25 12.5 6.25 0 

f(0,t) =0 , f(0,j)=0 for all values of j. 

Again from the given final boundary condition: f(4,t) =0 , f(4,j)=0 for all values 

of j. 

Also from the given initial condition:𝑓(𝑖, 0) = 50(4 − 𝑖) for all values of i. 

 

Hyperbolic equation 

Hyperbolic equation models the vibration of structure such as building beams and 

machines we here consider the case of a vibrating string that is fixed at both the 

ends as figure. 
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The lateral displacement of string f varies with time t and distance x along the 

string. The displacement f(x,t) is governed by the wave equation 

𝑇
𝜕2𝑓

𝜕𝑥2
= 𝜌

𝜕2𝑓

𝜕𝑡2
 

Where T is the tension in the string and ρ is the mass per unit length. 

Hyperbolic problems are governed by both boundary and initial conditions, if 

time is one of the independent variables. Two boundary conditions are the 

vibrating string problems under consideration are 

𝑓(0, 𝑡) = 0,     0 ≤ 𝑡 ≤ 𝑏 

𝑓(𝐿, 𝑡) = 0,    0 ≤ 𝑡 ≤ 𝑏 

Two initial condition are  

𝑓(𝑥, 0) = 𝑓(𝑥), 0 ≤ 𝑡 ≤ 𝛼 

𝑓𝑡(𝑥, 0) = 𝑔(𝑥), 0 ≤ 𝑡 ≤ 𝑎 

Solution hyperbolic equations 

The domain of interest 0 ≤ 𝑡 ≤ 𝑎 𝑎𝑛𝑑 0 ≤ 𝑡 ≤ 𝑏 is partitioned as shown in 

figure, the rectangle size is ∆𝑥 = ℎ, ∆𝑡 = 𝜏 
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Figure : Grid for solving hyperbolic equation 

The difference equation for 𝑓𝑥𝑥(𝑥, 𝑡) 𝑎𝑛𝑑  𝑓𝑡𝑡(𝑥, 𝑡)  are 

 

𝑓𝑥𝑥(𝑥, 𝑡) =
𝑓(𝑥 − ℎ, 𝑡) − 2𝑓(𝑥, 𝑡) + 𝑓(𝑥 + ℎ, 𝑡)

ℎ2
 

𝑓𝑡𝑡(𝑥, 𝑡) =
𝑓(𝑥, 𝑡 − 𝜏) − 2𝑓(𝑥, 𝑡) + 𝑓(𝑥, 𝑡 + 𝜏)

𝜏2
 

This implies that 

𝑇
𝑓𝑖−1,𝑗 − 2𝑓𝑖𝑗 + 𝑓𝑖+1,𝑗

ℎ2
= 𝜌

𝑓𝑖,𝑗−1 − 2𝑓𝑖𝑗 + 𝑓𝑖,𝑗+1

𝜏2
 

Solving this for 𝑓𝑖,𝑗+1, we obtain  

𝑓𝑖,𝑗+1 = −𝑓𝑖,𝑗−1 + 2(1 −
𝑇𝜏2

𝜌ℎ2
)𝑓𝑖𝑗 +

𝑇𝜏2

𝜌ℎ2
(𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗) 

If we make 1 −
𝑇𝜏2

𝜌ℎ2
= 0 

Then we have 

𝑓𝑖,𝑗+1 = −𝑓𝑖,𝑗−1 + 𝑓𝑖+1,𝑗 + 𝑓𝑖−1,𝑗  ………𝑑 
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The values of f at 𝑥 = 𝑥𝑖 and 𝑡 = 𝑡𝑗 + 𝜏 is equal to the um of the values of f, at 

the point 𝑥 = 𝑥𝑖 − ℎ and 𝑥 = 𝑥𝑖 + ℎ at the time 𝑡 = 𝑡𝑗(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒) minus 

the value of f at 𝑥 = 𝑥𝑖 at time 𝑡 = 𝑡𝑗 − 𝜏. From figure we can say 𝑓𝐴 = 𝑓𝐵 +

𝑓𝐷 − 𝑓𝐶  

Starting values  

We need two rows of starting values, corresponding to j=1 and j=2, in order to 

computer the values of the third row. First row is obtained using the condition. 

𝑓(𝑥, 0) = 𝑓(𝑥) 

The 2nd row can be obtained using the 2nd initial condition as 𝑓𝑡(𝑥, 0) = 𝑔(𝑥) 

 

We know that  

𝑓𝑡(𝑥, 0) =
𝑓𝑖,0+1 − 𝑓𝑖,0−1

2𝜏
= 𝑔𝑖 

𝑓𝑖,−1 = 𝑓𝑖,1 − 2𝜏𝑔𝑖  𝑓𝑜𝑟 𝑡 = 0 𝑜𝑛𝑙𝑦 

Substituting this in equation d, we get for 𝑡 = 𝑡1 

𝑓𝑖,1 =
1

2
(𝑓𝑖+1,0 + 𝑓𝑖−1,0) + 𝜏𝑔𝑖 …… . 𝑒 

In many cases 𝑔(𝑥𝑖) = 0 then we have 

𝑓𝑖,1 =
1

2
(𝑓𝑖+1,0 + 𝑓𝑖−1,0) 

 

 

 

Example: solve numerically the wave equation 

𝑓𝑡𝑡(𝑥, 𝑡) = 4𝑓𝑥𝑥(𝑥, 𝑡)0 ≤ 𝑥 ≤ 5 & 0 ≤ 𝑡 ≤ 2.5 

With boundary condition 

𝑓(0, 𝑡) = 0  𝑎𝑛𝑑𝑓(5, 𝑡) = 0 
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And initial values  

𝑓(𝑥, 0) = 𝑓(𝑥) = 𝑥(5 − 𝑥) 

𝑓𝑡(𝑥, 0) = 𝑔(𝑥) = 0 

Solution 

Let h=1 

Given 
𝑇

𝜌
= 4 

Assuming 1 − 4
𝜏2

12
= 0  

We get 

𝜏 =
1

2
 

The values estimated using equations d and e 

               

x 

t 

0 1 2 3 4 5 

0.0 0 4 6 6 4 0 

0.5 0 3 * 5 ** 5 3 0 

1.0 0 1 2 2 1 0 

1.5 0 -1*** -2 -2 -1 0 

2.0 0 -3 -5 -5 -3 0 

2.5 0 -4 -6 -6 -4 0 

 

∗=
0+6

2
   ∗∗=

4+6

2
   ∗∗∗= 2 + 0 − 3 

 

 




