Proof and Induction \qquad

Logic:-
Logic is the tool or language for reasoning about the truth and false of statement.
\rightarrow Logic helps us to reason about the mathematical model for solving po the problems of computer science.
\rightarrow Simply, $\log ^{\prime} \mathrm{c}$ is the generation of idea for solving problems.
\rightarrow logic is the study or the process of reasoning

- Main reason behind the development of logic
(1) To explore the depths unto which the statement explains.
(ii) To direct the nature of truth.
\# Types of logic
(1) Propositional Logic
(ii) Predicate $\log 1 c$
(iii) Fuzzy logic
\qquad
\qquad
\# Propositions
Propositions are the statement That are eisner true or false but not bath.
\rightarrow In mathematical modelling, propositions are denoted by alphabets like p, q, r, s and so on.
$\rightarrow e \cdot g:-$
Pokhara lies in Lalitpyo district (F)

$$
\begin{aligned}
& 2+10=12 \text { (T) } \\
& x+4=7 \text { (not proposition) }
\end{aligned}
$$

\rightarrow The truth value statement is denoted by T ' and the false value is denoted by ' f '.
\# Prepositional logic
\Rightarrow logic that deals with prepositions are called propositional logic.
\rightarrow proposional logic are sometime called as proportional callus.
Types of propositions
(a) Simple propositions
(b) Compound propositions
\qquad
\Rightarrow Simple propositions are those which cannot be break doron into atomic sentences.

7 When has on more proposition are combined using some operation thus the resulting proposing are called compound propositions
\rightarrow Logical connectives ans moose operator inst combines the simple propanition so form compound proportions.
\# Different 2 connectives are:-
(7) Negation (7)
(ii) conjunction (n)
(ii) Disjunction (v)
(17) Implication (-7)
(4) Dongle implication (\leftrightarrow)
(A) Basic one cover along with their their truth table
(a) Negation (-1)
\rightarrow If p is the proposition then the negation of P is denoted as $7 P$ and read as " n a p ")
\rightarrow for e.g. P:I7 is sining
Then the negation c an be
If is not maining
on
If is not the case that it is reining
\# Disjunction
\rightarrow Let p and q be two proposition then dispuriton of p and q is denoted by $p u q$ and read as "porq"
\rightarrow The truth value of disjunction is true if any one of constituent proposition is true and is false if all the proposition is false.

Truth table.

P	q	$p \cup q$
T	T	T
T	F	T
F	T	T
F	F	F

\# conjunction
\rightarrow The conjunction of two proposition pdq is denoted by $p \wedge q$ and read "pand q ".
\rightarrow The truth value of conjunction is true if all constituent proposition is true otherwise false.
P. T-O
\qquad
Truth table.

p	q	$p r q$
T	Γ	T
T	F	F
F	T	F
F	F	F

\# Implificcetion
\rightarrow Amplification is a conditional statement. \rightarrow If p and q are two proposition then the implification is denoted by " $p \rightarrow q$ " as read as:

* if ' p ' then ' q '
* 'p' implies ' q '
* if ' p ', ' q '.
* "p is sufficient for q "
\rightarrow The implifincation statement follows the if then rules where if part is said to be hypothesis and then part is the consequence or conclusion.
\rightarrow The basic Idea of implification is that the true hypothesis always lead to the true conclusion, but a wrong hyparhesis never lead to correct concresio?.
\qquad
\qquad
Truth table

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

p $\quad q$
hyporhes) concluster
\# Double implification
\rightarrow The double implification of p and q is denoted by " $p \leftrightarrow q$ " and read as " p if and only if q "
\rightarrow The truth value of double implification is true when all the constituent proposition have ϕ same value otherwise false.

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

\rightarrow The double implification statement is true if both hypothesis and conclusion is true.
\# Types of compound proposition
(1) Tautology
(ii) Contradiction
(iii) Contingency
\# Tautology
\rightarrow The compound proposition is said to be tautology if all the values of the truth table is true, whatever the constituent proposition may holds.

$$
\rightarrow e \cdot g:-p \rightarrow(p \vee q)
$$

P	q	$p \vee q$	$p \rightarrow(p \vee q)$
T	T	Γ	T
T	F	T	T
F	T	T	T
F	F	F	T

\# show that
(a) $[p \wedge(p \rightarrow q)] \rightarrow q$ is a tautology

p	q	$p \rightarrow q$	$p \wedge(p \rightarrow q)$	$S p \cap(p \rightarrow q)\} \rightarrow q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

\qquad
\qquad
(b) $[(p \rightarrow q) \wedge(q \rightarrow \gamma)\} \rightarrow(p \rightarrow \gamma)$

\# Contradiction
\rightarrow The negation of the tautology is contradicho
\rightarrow If all the interpretation of a compocend proposition results a false value then the compound statement is said to be contradide
\qquad
\qquad
fig:. $\quad \tau(p \rightarrow(p \vee q)$ is a contradiction

p	q	$p \vee q$	$p \rightarrow(p \vee q)$	$T(p \rightarrow(p \vee q)$
T	T	T	T	F
T	F	T	F	F
F	Γ	F	T	F
F	F	F	T	F

\# Contingency
\rightarrow If the intreperation of truth table contains the combination of true and false value the the compound proposition is said to be contingency
\rightarrow Egg $\quad P \leftrightarrow q$ is a contingent.

P	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

\qquad
\# Converse, inverse and contrapositive
\rightarrow we know that, the conditional statement consist of hypothesis and conclusion.
\rightarrow when the position of hypothesis is changed, negated or born a new compound statement is formed.
converse
\rightarrow If $p \rightarrow q$ is a implification statement the its converse is denoted by $q \rightarrow p$.

Inverse
\rightarrow for $p \rightarrow q$, the inverse is written as $7 p \rightarrow 7 q$
contraposihue
\rightarrow If the implication of p and q is denoted by $p \rightarrow q$ then its contrapositive is denoted by

$$
7 q \rightarrow 7 p
$$

\# If she smiles, she is happy is a implifato statement, then what cure converse, inverse and contrapositive?
converse
If she is happy, she smiles
\qquad
\qquad
Inverse
If she does not smile, she is not happy contrapositive
if she is not happy, she does not smile
\# Logically equivalent.
\rightarrow If P and q are two compound proposition, then the equivalent of P and Q is denoted by

$$
P \equiv Q
$$

\rightarrow If the both compound proposition P and Q have the identical values in the touter table, then the preposition are said to be logically equivalent.
\# show that implification and its contrapositive is logically equivalent.
\qquad
\qquad
\# check for the logical equivalence for the e following preposition.

$$
(p \wedge(q \vee \gamma)) \equiv((p \wedge q) \vee(p \wedge \gamma))
$$

p	q	γ	$q \vee \gamma$	$p \wedge q$	$p \wedge r$	$p \wedge(q \vee r)$	$((p \wedge q) \vee(p \wedge))$
T							
T	T	F	T	T	F	T	T
T	F	T	T	F	T	T	T
T	F						
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F							

So, from above touts table, the propositions are idential, hence, the given proposition are logically equivalance
\# Translating the sentences into the preposition a
logic
(i) Identify all the individual sentences and assign alphabets for all the atomic sentence
(11) Identify all the connectives used in the sentences
(11) Write the propositional Logic using tease
\qquad
\qquad
alphabets and connectives lased in the sentences
EGg:-
You can access the college internet only if you are a computer science of you core not a fresher.
p : You can access the college internet
q: You are a computer science student
r : You are a fresher
connechues
only if (implificahon) \rightarrow
or (doefurchon) v
not (negation) 7

$$
(p \rightarrow q) \vee(7 r) \quad p \rightarrow(q \vee 7 r)
$$

p	q	r	$p \rightarrow q$	$7 r$	$q u(r)(p \rightarrow q) \vee(7 r) p \rightarrow(q \cup 7 r)$		
T	T	T	T	F	T	T	T
T	T	F	F	T	T	T	T
T	F	T	T	F	F	T	F
T	F	F	F	T	T	T	
F	T	T	T	F	T	T	Γ
F	T	F	T	T	T	T	T
F	F	T	T	F	F	T	Γ
F	F	F	T	Γ	T	T	Γ

\# Hiking is safe along the trail if and only if Berries are ripe along the trail and berar have not been seen along the ween
p : Hiking is safe along the trail q : Berries are ripe along the tran γ : bears have seen along the area
connechues
if and only if (double implification) \longleftrightarrow and (conquachon)s
not (negahon) 7

$$
p \leftrightarrow(q \cap 7 r)
$$

$p q r$
\qquad
\qquad
\# Predicate $\log ^{i} c$ (First order propositional $\log ^{\prime} c$)
\rightarrow Predicate logic are those which are defined using some predicate.
\rightarrow The truth and false value of predicate statemen are not declarative. For find the truth and false value we need to define the propositional function.
\rightarrow Eg:- $x>5$ is the statement whose truth value cannot be declared easily.
\rightarrow The predicate of the given statement car be written as:
$p(x): x>5$ where ' p ' is the predicate and $P(x)$ is a propositional function.
\rightarrow when the variable of the propositional farchon is substituted by only value, then the predicate becomes proposition

$$
\begin{aligned}
& \rightarrow P(x): x>5 \\
& \quad P(2): 275 \text { is a proposition } \\
& P(7):-7>5 \text { is a proposition }
\end{aligned}
$$

\qquad
\# Quantifier \& Quantification
\rightarrow Quantifier are the tools that makes the propositional function into propositions.
\rightarrow construction of proposition from the predicate. using the quantifier is called quantification
\rightarrow For this we need to define the domain the propositional function
\rightarrow simply, quantification is the process of finding the propositional function into some predefined domain values.
\rightarrow If $p(x)$ is a propositional function, where ' x ' is a variable we need to subshitude the value of x from some domain
\rightarrow IF D^{\prime} is any set for $P(x)$, then we can say that ' P ' is a predicate with respect to ' D ' and for each value of ' D ' $P(x)$ is 9 proposition.
\rightarrow The set of value ' D ' is known as Discourse. for P.
\qquad
\qquad
\# Types of Qualifier
(i) Universal Quantifier (\forall)
(ii) Existential Quantifier (7)
(1) Universal Quantifier (\forall) :-
\rightarrow The universal quantifier for a predicate - $P(x)$ is denoted by w $\forall x P(x)$ and read as "For all $x P(x)$ " or "for each $x P(x)$ holds".
\rightarrow The universal quantifier are used for universal quantification.
\rightarrow The universally quantified statement is true if all the values in the universal set holds true.
\rightarrow Let $P(x)$ be the predicate then truth value of $\forall x P(x)$ is true if $P(x)$ is true for all the values in the given domain and is false if $P(x)$ is false for any value in The domain.
\rightarrow Let $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a predicate such that $p\left(x_{1}\right), p\left(x_{2}\right), \ldots, p\left(x_{1}\right)$ are its different instances
Then, $\forall_{x} P\left(x_{1}, x_{2}, \cdots, x_{4}\right)$ is the true if all the above instances are true and false if at least one instance is false
\qquad
\qquad
ie.

$$
\forall_{x} P\left(x_{1}, x_{2}, \ldots x_{4}\right) \equiv P\left(x_{1}\right) \cap P\left(x_{2}\right)^{\wedge} \ldots \cap P\left(x_{4}\right)
$$

Eg:-

$$
\begin{aligned}
& x^{2}-1>0 \text { for } x \in R \\
& P(x): x^{2}-1>0, x^{2}-1>0 \\
& x=1, \quad 0>0 \text { (false) } \\
& x=2 \quad x^{2}-1>0 \\
& 3>0 \text { (то位) } \\
& x=3, \quad x^{2}-1>0 \\
& \text { 8) } 0 \text { (Tote) }
\end{aligned}
$$

The given statement is not tore for all the values ie. $x=1$ it is false.
so, $\forall x P(x)$ is false.
\rightarrow Here, $x=1$ is a counter example that maker the universalfy quantised statement false.
\# Existential Quantifier
\rightarrow if $P(x)$ is a predicate, then the existential quantification of $P(x)$ is denoted by $\exists_{x} P(x)$ and read as "for some $x P(x)$ " or " those exist $x \quad P(x)^{\prime \prime}$.
\rightarrow The truth value of $\exists x P(x)$ is true if
\qquad
\qquad
$P(x)$ is true for at least ane value of the given domain is to we and is false if $P(x)$ is false for each value of the given domain.
\rightarrow Let $p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ be a predicate such that $P\left(x_{1}\right), P\left(x_{2}\right), P\left(x_{3}\right), \ldots, P\left(x_{4}\right)$ are the different instances then

In $P\left(x_{1}, x_{2}, \ldots, x_{4}\right)$ is to ne if at least one of the above instance is true and is false if all the above instances are false.

$$
\exists_{x} \quad P\left(x_{1}, x_{2}, \cdots x_{1}\right) \equiv p\left(x_{1}\right) \vee p\left(x_{2}\right) \ldots \vee p\left(x_{1}\right)
$$

\# Translating the sentences into statement of predicate logic.
a) Every student the in this class studies MFCS
b) Some student in this class likes MFCS
c) All king are men
d) Some lions are dangerous.
\qquad
a) Ans
$s(x): x$ is student of this class
$M(x): x$ studies MFCS

$$
\forall x[s(x) \rightarrow m(x)]
$$

b)
$s(x): x$ is student of this class $M(x)$: X'student likes MFCS

$$
\#_{x}[s(x) \nexists M(x)]
$$

c)

$$
\begin{aligned}
& H(x): x \text { is a King } \\
& m(x): x \text { is men } \\
& \forall x[\mathbb{F}(x) \rightarrow M(x)]
\end{aligned}
$$

d)

$$
L(x): x \text { is de lion }
$$

$m(x)$: x lions are dangerous

$$
\exists_{x}\left[L(x)^{\wedge} M(x)\right]
$$

\qquad
\# Nested Quantification
\rightarrow Quantification within a quantification.
\rightarrow Let $P(x, y)$ be a predicate then
(1) $\forall x \forall y P(x, y)$ is true (f $P \in 0, J)$ is to be for every value of x and at lest y otherwise false
(ii.) $\forall x$ ty $P(x, y)$ is true for every value of x and at least one value of ' y ' otherwise false.
(iii) $\exists x \forall y P(x, y)$ is true if $P(x, y)$ is tore for at least one value of x and foo every value of y otherwise false.
(10) $\exists x \exists y P(x, y)$ is tome if $P(x, y)$ is true for some value of x and y otherwise false
E.g:-

$$
\text { If } \quad P(x, y): x+y=0 \quad x, y \in R
$$

(1) $\forall x$ by $p(x, y)=$ false
(Ii) $\forall x$ Fy $P(x, y)=$ true
(iii) $\exists_{x} \forall y P(x, y)=$ false
(iv) $\exists x{ }^{7} y P(x, y)=$ roue
\qquad
\qquad
\# Elementry stepwise induction and complete induction
\rightarrow gt is also called well ordering principles.
\rightarrow sometimes also called as proof by mathematical induction.
\rightarrow Let $p(n)$ be a statement. Now our concesy is to show that $P(y)$ is true using
\rightarrow For this we frost show that $p(y)$ is free for some initial value like $n=0,1,2, \ldots$. . This step is called basis step.
\rightarrow Then we assume that $P(4)$ is true for any arbitary value ' k ' 1.e. $P(k)$ is true and show rat $p(y)$ is true for $(x+1)$ ie $p(x+1)$ is true. This step is called inductive step.
Thus mathematical induction an be defined an

$$
\underset{\substack{\text { Basis } \\ \text { step }}}{P(1)^{\wedge}} \frac{[P(K) \rightarrow P(x+1)] \rightarrow P(n)}{\text { Inductive step }}
$$

\qquad
\qquad
\# Using mathematical induction show that

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}, n \geq 1
$$

Sol ${ }^{1}$
Basis step, for $n=1$

$$
\begin{aligned}
& p(n)=1+2+3 \cdots+n=\frac{n(n+1)}{2} \\
& \frac{n(n+1)}{2} \\
& \frac{1(1+1)}{2}=2 / 2=1 \\
& \therefore p(1) \text { is true. }
\end{aligned}
$$

For inductive step.
we assume that the $P(7)$ is true for $\operatorname{som} \theta$ arbitary k ie.
$P(k)$ is true

$$
\text { 1.e } \frac{k(k+1)}{2}
$$

Now, we try proves for kra ie

$$
\begin{aligned}
P(k+1)= & 1+2+3+4+\cdots+k+k+1=\frac{(k+1)\}(k+1)+1\}}{2} \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =(k+1)\left\{\frac{k}{2}+1\right\}
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
& =(k+1)\left\{\frac{k+2}{2}\right\} \\
& =(k+1)\left\{\frac{(k+1)+1}{2}\right\}
\end{aligned}
$$

Therefore, the given formula is valid for mathematical induction.
\# Show that

$$
\frac{2+2^{2}+2^{3}+\cdots+2^{3}=2^{n+1}-2 \text { using matheate }}{\text { uchon }}
$$ induchon.

Sol?
Basis step. For $n=1$

$$
\begin{gathered}
P(4)=2+2^{2}+2^{3}+\cdots+2^{4}=2^{4+1}-2 \\
2^{4+1}-2 \\
2^{1+1}-2 \\
4-2=2
\end{gathered}
$$

$P(I)$ is true.
For Inductive step
we assume that $P(N)$ is true for any arbitary k

$$
\begin{aligned}
& P(k) \text { is toke } \\
& 1 .-c \quad 2^{k+1}-2
\end{aligned}
$$

Now, we toy to proves for $k+1$

$$
\begin{aligned}
P(k+1) & =2+2^{2}+2^{3}+\cdots+2^{k} F_{2}^{k+1}=2^{k+1)+1}-2 \\
& =2^{k+1}-2+2^{k+1} \\
& \Rightarrow 2^{k+1}(1+1)-2 \\
& =2^{k+1} \cdot 2-2 \\
& =2^{\langle k+1\}+1}-2
\end{aligned}
$$

Therefore, $\quad \gamma 2+2^{2}+2^{3}+\cdots+2^{7}=2^{7+1}-2$ is valid for mathematical induction.
\# show that $8^{n}-3^{n}$ is divisible by 5 for $n \geq 1$ using mathematical induction.

501 ?
Basis step: for $n=1$

$$
\begin{aligned}
& P(4)=8^{4}-3^{4} \\
& 8^{\prime}-3^{\prime}=5
\end{aligned}
$$

$P(1)$ is true
For Inductive step
We assume that $P(K)$ is true for any arbitary K.
$P(k)$ is true

$$
\text { 1.e } 8^{k}-3^{k}
$$

\qquad
\qquad
Now, we try to proves for $k \neq 1$.

$$
\begin{aligned}
P(k+1) & =8^{k+1}-3^{k+1} \\
& =8^{k} \cdot 8^{\prime}-3^{k} \cdot 3 \\
& =8^{k}(5+3)-3^{k} \cdot 3 \\
& =8^{k} \cdot 5+3 \cdot 8^{k}-3^{k} \cdot 3 \\
& =8^{k} \cdot 5+3\left(8^{k}-3^{k}\right)
\end{aligned}
$$

Here, 85.8^{k} is multiple of 5 , so it is divisible by^{5} and we assumed that $8^{k}-3^{k}$ is true and it product by any constant is also divisible by 5 .
Hence, $8^{n}-3^{n}$ is divisible by 5 is valid Foo mathematical induction.
since $8^{k} \cdot 5$ is divisible by 5 , from our assumption $\left(8^{k}-3^{k}\right)$ is also divisible by 5 Two individual no divisible by 5 . when? added is also divisible by s
so, we can say that $p(4)=8^{n}-3^{n}$ is divisible by f using mathematical induction.

Introduction to Mathematical Reasostrig
\rightarrow Any of the mathematical statements ace supported by arguments that makes it correct.
\rightarrow For this we need to $\$ 40 w$ different techniques and rules that can be applied in the mathematical statements. So we can prove that correctness of given mathematical statements.
\rightarrow This method of cencerstanding the the correctness by sequence of statement forming as argument is a proof of statement.

Axioms :-
\rightarrow Axioms are the assumption about the mathematical instructions.
\rightarrow They are the hypothesis of the theorer to be proved and previously proved theorem.
\# Rules of inference
\rightarrow To draw the conclusion from the given statements we must be able to supply well defined statements that helps reaching the conclusion
\qquad
\rightarrow The steps for reaching the conclusion are provided by rules of inference.

Inference
\rightarrow The process of drawing a conclusion from the given fact using certain valid rules is called inference.
\# Rules of Inference in propositional Logic
(1) Modus ponens:-
\rightarrow where the proposition p and $p \rightarrow q$ are true, then we confirm that q is true.

$$
\begin{array}{r}
\text { 1.e } p \rightarrow q \\
\frac{p}{\therefore q}
\end{array}
$$

(ii) Modes Tollens:-
\rightarrow when two proposition $p \rightarrow q$ and 79 is to we then $7 p$ is also true.

$$
\begin{aligned}
& \text { 1.e. } p \rightarrow q \\
& \frac{7 q}{} \\
& \therefore 7 p
\end{aligned}
$$

\qquad
(ii) Hypothetical syllogism

$$
\begin{aligned}
& p \rightarrow q \\
& p \rightarrow \gamma \\
& \therefore p \rightarrow r
\end{aligned}
$$

(iv) Disjunctive syllogism

$$
\frac{p \vee q}{7 p}
$$

(v) Additive rule

$$
\frac{p}{\therefore p \cup q}
$$

(vii) simplification

$$
\frac{p \wedge q}{\therefore p, q}
$$

vii) Conjunction

$$
\frac{p}{\frac{q}{p n q}}
$$

\qquad
viii

$$
\frac{\text { Resolution }}{p \vee q} \frac{7 p \vee r}{\therefore q \vee r}
$$

\# using rules of inference show that the following hypothesis
(a) It is not sunny this afternoon and if is colder than yesterday
b) We will go swimming only if if is suing
c) If we didy't go to swimming, then we will go for a canoe toil.
(d) If we go for a canoe trip, then woe will bo home by sunset.
leads to the conclusion:
we will be home by sunset
Sol
Identifying the individual sentences.
a: It is sunny this defterroon $b:$ It is cooler than yesterday
\qquad
\qquad
clue will go swimming.
d: wo will go for a canoe trip.
e: we will be home by sunset
writing the given statements into propositional logic statements.
(1) $7 a n b$
(ii) $c \rightarrow a$
(iii) $7 c \rightarrow d$
(10) $d \rightarrow e$
conclusion

Proof:
steps.
(1)7anb
(ii) $7 a$
(iii) $c \rightarrow a$
(iv) $7 c$
(v) Give $7 c \rightarrow d$

Reasons
(1) Given hypothesis
(ii) using simplification an hyporresis (i)
(ii) Oniven hypothesis
(IV) using modus tollens on hypothesis (II) 8 sis
(c) Giver hypothesis
\qquad
\qquad
vi) d
(v) using modus pones on hypothesis iv \& (0)
vii) $d \rightarrow e$
(vii) Given hypothesis
vii) e
(vii) using modus pones on (vi) \& vii
\# Using rules of inference show that the following hypothesis
a) If you send me e-mailmessage, then 1 will finish writing the program.
b) If you don't send be an email message, hon I will go to sleep early.
c) If I go to sleep early then I will wake up feeling refreshed.
leads to conclusion
if I don't finish writing one program then I will wake up feeling refreshed.
$50 l^{3}$
Identifying the individual sentences
a: send me an email message
b: I will finish writing the program.
c: I will go to sleep early
d: I will wake up feeling refreshed writing the given statement into propositional logic statement
hypother is
(1) $a \rightarrow b$
(II) $7 a \rightarrow c$
(ii.) $c \rightarrow d$
conclusion

$$
7 b \rightarrow d
$$

\qquad
Proof
steps
(i) $a \rightarrow b$
(11) $7 b \rightarrow 7 a$
(iii) $7 a \rightarrow c$
(io) $7 b \rightarrow c$
v) $c \rightarrow d$
(vi) $7 b \rightarrow d$

Reasons
(1) Given hypothesis
(1) Applying contraposibue on hypothesis I
(iii) Given hypothesis
hypothetical
(v) using modes pones syllogism ${ }^{4}$ on hypomesy
(ii) \& (iII

Given hypothec is
(vi) Applying hyporhehiccel syllogism" on hypothesis (iv) \& (0)
Q. Show that the following hypothesis
a) If today is tuesday, , have a test in mathematics or economics
b) If my economic professor is sick, i will not have a test in economics.
c) Today is tuesday and my economics. professor is sick
leads to the condusion?
I have a test in mathematics
sol
Identifying the individual sentences
a: Today is tuesday
b: 1 have a fest in mathewahey
c: 1 have a test in economics
d: my economics professor is sick
writing the given statement int propositional logic statement
Hgpothes is
(1) $a \rightarrow[b \vee c]$
(ii) $d \rightarrow 7 c$
(II) $a n d$
conclusion
a $\rightarrow T$
$b \vee c$ $d \rightarrow T$
TC

3
Proof:-

$$
\begin{aligned}
& \frac{\text { steps }}{} \\
& \text { (i) } a \rightarrow\left[b v_{c}\right) \\
& \text { y } 7 a v\left(b v_{c}\right)
\end{aligned}
$$

© and
(II) a, d
(ii) $d \rightarrow 7 c$
(10) $7 c$
(4) $a \rightarrow[b \cup c)$
(vi) $b^{v} c$
(vii) b

Reasons
-(4) logically equivallus
(1) Given hypothesis
(ii) using symplification on (1)
(ii) Enliven
(10) using nodus pones m.(i.d
(c) Given"
(vi) using modus pones in Quad
vii) Using disfunchue syllogism (v) a d. (6)
\qquad
\# Rules of inference for Quantified statement
(1) Universal Insantiation:-

$$
\begin{aligned}
& \forall x P(x) \\
& \therefore P(d)
\end{aligned}
$$

where ' d ' is the value from universe of discourse.
Eg:- All birds can fly
Assuming
$B(x): x$ is a bird

$$
F(x)=x \text { can } f / y
$$

The? $\forall x B(x) \rightarrow F(x)$
from this we can draw a conclusion

$$
B(\text { sparrow } \omega) \rightarrow F(\text { sparrow } \sigma \omega)
$$

(ii) Universal Generalization

- $p(d)$ is true where ' d ' is the universe of discourse, then,
$\forall x P(x)$ is true
(17) $\frac{\text { Existential frstantation }}{\exists x^{P} P(x)}$
$\therefore P(d)$ is toke
(iv) Existential Gneneralizahan $P(d) \in D$ bis universe of discourse
$\therefore 3 x^{P(x)}$
\qquad
\# Proof in quantified statement \qquad
\rightarrow Proof in quantified statements are complex than propositional tog one.
\rightarrow we cannot apply the rules of inference for quantified statement directly.
\rightarrow The steps to apply the rules for inference for quantified statements are:
(1) Apply the rules of instantiahon for quashed statement, so that sentences becomes proposition es
(ii) Apply the rules of inferences of propositional logic.
(iii) Finally apply the generalization rule to comet the propositional logic back to quantified statement

Predicate (quantified statement)
\downarrow
Rules of instantiation
\downarrow
proposition
\downarrow
Apply rules of proposition
Rules of Gnereralizeden predicate (quadकhned statement)
\qquad
\qquad
2(a) We are given a hypothesis
(a) Everyone loves either paicrosoft ar Apple.
(h) Lynn does not love Microsoft.
show that the conclusion
Lynn loves Apple
SOl?
Defining prediction,
$m(x)$: x loves microsoft
$A(x)$: x loves Apple.
Hypothesis
(1) $\forall x[M(x) \cup A(x)]$
(ii) $7 \mathrm{~m}($ Lynn $)$
conclusion

$$
A\left(L y_{n 4}\right)
$$

Proof
steps
(1) $\forall x[m(x) \vee A(x)]$
(ii) $m($ (Inn $) \cup A($ Lynn $)$
(ii) $7 M(L y+n)$
(iv) $A(\operatorname{lynn})$

Reasons
Given hypormasls
Using universal instantiation uyporuers (1)

$$
P(d) \in D, d: \operatorname{lyn} n
$$

Given bypoothesie Applying dissunctuve sillarist on hyparkesis (i) की iii)
\qquad
\# Introduction to proof
\rightarrow An argument used to establish the truth of mathematiocel statement is called proof.
\rightarrow while establishing the truth, different rules and already proven facts are used.
\rightarrow Proof can be
(I) Formal proof
(ii) Informal proof of
\rightarrow Direct proof
\rightarrow Indirect proof
\rightarrow formal proof is a technique where predehzed rules and steps. are used to show that given statement is tome
\rightarrow in informal proof such predefined rules and steps may not be used
\rightarrow Further classification of informal proof
(a) Direct proof
(b) indirect proof
(a) Direct proof :-

If $p \rightarrow q$ be an implification, in direct proof we assume that hypothesis is. true 1.e ' p ' is true. Then by using
\qquad
different theorem and already proven fact, we conclude that conclusion is also true 1.e. q is true.
\rightarrow The idea behind the direct proof is that tone hypothesis leads to true conclusion.
\# Using direct proof, show. That if ' n ' is odd then n^{2} is odd.

Sol?
If ' n ' is odd, then n^{2} is odd
p : ' n ' is odd' '
$q: x^{2}$ is odd

$$
p \rightarrow q
$$

In direct proof, we assume that hyporkescs is toul ie. We assume that ' n ' is odd.
dow, by definition of add number.

$$
n=2 k+1 \quad[k=0,1,2, \cdots]
$$

squaring bath side

$$
\begin{aligned}
& n^{2}=(2 k+1)^{2} \\
& n^{2}=4 k^{2}+4 k+1
\end{aligned}
$$

Here,

$$
\begin{aligned}
& 6 k^{2}+4 k+7 \\
& =2\left(k^{2}+2 k\right)+1
\end{aligned}
$$

\qquad
\qquad

$$
=2 k^{\prime}+1 \quad\left[k^{\prime}=2 k^{2}+2 k\right]
$$

for any value the above value is add $\therefore n^{2}$ is also odd.

Hence, we can say that the conclusion n^{2} is odd is tree and the assumption of ' n ' is odd is also tore. so wherever ' n ' is odd n^{2} is odd is proved using direct proof.
\# The sum of two rational number is rational using direct proof.
ड0ी
Let P and Q be any two rational numbers and let $M=P+Q$

Then their exists integers a, b, c and d such that $P=a / b$ and $Q=c / d$.

$$
\text { so, } \begin{aligned}
m & =a / b+c / d \\
m & =\frac{a d+b c}{b d}
\end{aligned}
$$

Since, a, b, c, and d are integers. $(a d+b c)$ ant (bd) are integers. Since b and d are zon-zero $\therefore M$ is a rahonal number.
so, the sum of any two ratiancel numbers is also a rational number.
\qquad
\qquad
\# Prove by direct proof, show that if $(34+2)$ is odd tho n is add
sol?
If $3 n+2$ is odd, then $34+2$ is odd
P: $(3 u+2)$ is $a d d$
$p: n$ is odd

$$
p \rightarrow q
$$

In direct proof, we assume that hypothesis is to ce lie we assure then $3 y+2$ is odd
\qquad
\qquad
by defnihon af odd number,

$$
\begin{aligned}
3 n+2 & =2 k+1 \\
3 n & =2 k-1 \\
n & =\frac{2 k-1}{3} \leftarrow \text { dead end of proof. }
\end{aligned}
$$

\# Indirect proof:-
\rightarrow for certain case, the direct proof may not be a pporpriaté
\rightarrow for e.g: if $(3 n+2)$ is add, Then in' is odd
\rightarrow Here, using the direct proof, we may not reach the conclusion such prosier is considered as "dea dent" of proof.
\rightarrow To overcome such problem, we cal use indirect proof.

Two types of indirect poof are:-
(a) proof by contradichon
(b) proof by contraposihue

$$
p \rightarrow q \equiv 7 q \rightarrow 7 p
$$

classmate
\qquad
(-) Proof by contraposihue
\rightarrow Let $p \rightarrow q$ is an implication, Then in proof by contraposibue, we assume that the negation of conclusion is tore e 1.e 79 is tribe.
\rightarrow Then by using different theorem and already proven facts we conclude that negation of hypothesis is also tore ie $7 P$ is tow.
\rightarrow The idea behind the proof by contraposituc is the negation of conclusion leads to negation of hypothesis and implication is also toke.
\rightarrow gt is because, the implication and the contrapositive woe logically equivalent.
\# Using proof by contrapositive shows that if $(3 n+2)$ is odd then s is odd.
sol
If $3 n+2$ is add then n is $9 d d$ $p: 3 y+2$ is odd
$q: n^{\text {n }}$ is 0 d

$$
p \rightarrow q \equiv 7 q \rightarrow 7 p
$$

we assume that negation of conclusion \qquad
Now, by definition of ever.

$$
\therefore \quad \begin{array}{r}
n=2 k \\
3 n+2=2 k+2 \\
3 n+2=n+2
\end{array}
$$

Non, we try to prove 7 p is also true. tee $(3 n+2)$ is eve.

By definition of even number

$$
n=2 k
$$

¿ ow,

$$
3(2 k)+2
$$

$$
(6 k+2) \text { which is evens. }
$$

$\therefore \quad(3 y+2)$ is ever
1.e negation of hypothes y is also true Here, the negation of conclusion leads te negation of hypothesis. so we conclude that When $(3 n+2)$ is odd then n ' is add by using proof by contraposinue
\qquad
\# Proof by contradiction
\rightarrow It is also the process of proof by indirect method
\rightarrow For a proof by contradiction, these may arise following cases.
(a) The given statement is an implification.
\rightarrow For implification statement we assume the negation of conclusion and hypothesis is true te $2 q \cap p$
\rightarrow Then by using different theorem and already proven facts we drive that negation of hypothesis is true 1.e. Ip is true.
\rightarrow This is contradiction to our cessumption.
Hence, we can say that our assumption was wrong and given statement is to we
(b) Griven statement is not an implification \rightarrow for this we cossume that negation of the gives statement is true. Then after processing we reach to the point that contradicts our assumption.
\rightarrow Hence, we say That dur assumption was wrong and give? statement is true.
\qquad
\qquad
This implies q^{2} is also even Thus p and q are divisible by 2 , so, the p and q cannot form a rationcel number. Thus our cessumphon of $\sqrt{2}$ is rational is false $1-e$. con condradicts to our assumption.
\rightarrow so our assumphon was wrong 1.e. $\sqrt{2}$ ie not rational.

Recurrence Relation \qquad
\rightarrow Let do, $a_{1}, a_{2}, \ldots, a_{n}$ be the ' n ' terms of a sequence d_{n}.
\rightarrow Then a_{n} is said to be recurrence relation if a_{n} can be expressed by an equation in texas of it's previous elements.

For egg: - $a_{n}=5 a_{n-1}+6 a_{n-2}$ is a recurrence relation
\rightarrow consider a sequence

$$
5,8,11,14, \ldots
$$

Here, the first term of sequence $a_{1}=5$ and we can define the sequence a $a_{1}=a_{n-1}+3$ for $n \geq 2$
\rightarrow This equation is the recurrence definition because it defines the tern of sequence in reference to its previous time.
\rightarrow For every recurrence relation there must be some initial condition.

$$
\text { e.g }=a_{0}=5, \quad a_{1}=7, \text { etc }
$$

\qquad
Tower of Hanoi

$$
\text { pege } 2 \text { : }
$$

Temporary
\rightarrow Let H_{n} be the moves required to move 'n' disks from source (pagpeg 1) to destination (peg 3).
\rightarrow first of all with the help of peg 2 and peg 3 , $(n-1)$ disks from source is arranged to temporary (peg 2). This requires. H_{n-2} mover
\rightarrow Then the largest disk from peg.1 is moved to peg 3 , which requires 's' move.
\rightarrow Finally $(n-1)$ disk from peg 2 are moved to peg 3 , with the help of peg 7 \& per? which farther requires H_{n-1} moves.
\rightarrow Hence we can define the recurring relation as:

$$
\begin{aligned}
& H_{n}=H_{n-1}+1+H_{n-1} \\
& H_{n}=2 H_{n-1}+1 \\
& \text { requiter mornennen }
\end{aligned}
$$

which is required recurrence relation.

Now,

$$
\begin{aligned}
H_{n} & =2 \mathrm{H}_{n-1}+1 \\
& 2\left(2 \mathrm{H}_{n-2}+1\right)+1 \\
& =2\left(2 \mathrm{H}_{n-2}+1\right)+1 \\
& =2\left(2\left(2 \mathrm{H}_{n-3}+1\right)+1\right)+1 \\
& =2\left(4 \mathrm{H}_{n}-3+2\right)+2+1 \\
& =2\left(4\left(2 \mathrm{H}_{n}-4+1\right)+2\right)+1 \\
& =2\left(8 \mathrm{H}_{n-4}+4+2\right)+1 \\
& =2\left(2^{3} \mathrm{H}_{n-4}+2^{2}+2^{1}+2^{0}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { for } n \text { disks }}{2\left(2^{n-1} \cdot 1+2^{n-2}+\cdots 2^{3}+2^{2}+2^{1}+2^{0}\right)} \\
& \text { common rahon }=\frac{f^{0}}{2} \frac{2^{1}}{2^{0}}=2
\end{aligned}
$$

Thus relation sahsfies the geometric series with commas raho 2 .

$$
\begin{aligned}
\text { sun of Gr S } & =\frac{a\left(r^{4}-1\right)}{7-1} \\
& =\frac{1\left(2^{4}-1\right)}{2-1} \\
& =2^{4}-1
\end{aligned}
$$

\qquad
\# Types of Recurrence Relahon
(1) Linear Homogenous recurrence relahon
(ii) Linear non.homogenous recterence relation
(1) Linear Homogenous recurrence relation:-
\rightarrow A recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots c_{k} a_{n-k}
$$

is called linear homogenoces relation of degree k^{\prime} where $c_{1}, c_{2}, \ldots c_{k}$ as e constant and $c_{k} \neq 0$.
eg:-
$a_{n}=5 a_{n-1}-6 a_{n-2}$ is linear horogenocus recurrence relation of degree 2 .
\# Soluhon of linear homoyeroces recurrent selahon

$$
\begin{aligned}
& \text { Let } a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots c_{k} a_{n-k} \\
& \text { is linear homogenoces }
\end{aligned}
$$ is linear homogenous securrence selahon of degree ' k '.

$\rightarrow A$ sequence $a_{n}=r^{n}$ is said to be it's solution, if it is satisfies the given
recurrence relation. recurrence relation.

$$
\gamma^{4}=c_{1} \gamma^{n-1}+c_{2} \gamma^{n-2}+\cdots+c_{k} r^{n-k}+\cdots
$$

\qquad
Dividing both side of eq (ii) by γ^{n-k}

$$
\begin{align*}
& \frac{\gamma^{n}}{\gamma^{n-k}}=\frac{c_{1} \cdot \gamma^{n-1}+c_{2} \gamma^{n-2}+\cdots+c_{k} \cdot \gamma^{n-k}}{\gamma^{n-k}} \\
& \text { or, } \gamma^{k}=c_{1} \gamma^{k-1}+c_{2} \cdot \gamma^{k-2}+\cdots+c_{k} \\
& \text { or, } \gamma^{k}-c_{1} \gamma^{k-1}-c_{2} \gamma^{k-2}+\cdots c_{k}=0 \tag{11}
\end{align*}
$$

eq? (III) is called characterishcs equation of degree K.
The roots of thus equation are called characterishics root.

Eg

$$
\begin{gathered}
a_{n}=6 a_{n-1}+10 a_{n-2} \\
a_{n}=\gamma^{4} \\
\frac{r^{4}}{r^{n-2}}=\frac{6 \gamma^{n-1}+10 \sigma^{n-2}}{\gamma^{n-2}} \\
r^{2}=6 \gamma+10 \\
r^{2}-6 \gamma-10=0,0
\end{gathered}
$$

The roots of the characteristics equation can be same or different.
\qquad
Theorem
If the charactershc eq of the linear homogenous recurrence relation of the form
$a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$ of degree 2
1.e $\sigma^{2}-c_{1} \gamma-c_{2}=G$ and roots are distinct 1.e $\sigma_{1} \& \gamma_{2}$ then, solution will be of form

$$
a_{1}=\alpha_{1} \gamma_{1}^{n}+\alpha_{2} \sigma_{2}^{n}
$$

\rightarrow If roots are sane then, soluhon will te of for

$$
a_{1}=\alpha_{1} \gamma_{1}^{n}+n \alpha_{2} \gamma_{1}^{4}
$$

\qquad
\qquad
Derive the solution for recursive notation $a_{n}=5 a_{n-1}-6 a_{n-2}$ with $a_{0}=3 \neq a_{1}=5$

$$
a_{n}=5 a_{n-1}-6 a_{n-2}
$$

The corresponding characistics equation is

$$
\begin{aligned}
& r^{2}=5 r-6 \\
& r^{2}-5 r+6=0 \quad-1
\end{aligned}
$$

The routs of en (1) is

$$
\begin{gathered}
r^{2}-2 r-3 \gamma+6=0 \\
r(\gamma-2)-3(r-2)=0 \\
(\gamma-2)(\gamma-3)=0 \\
r=2 \\
r=3
\end{gathered}
$$

Here roots are distinct as the solution is of the form

$$
\begin{align*}
& a_{n}=\alpha_{1} \gamma_{2}^{n}+\alpha_{2} \gamma_{2}^{n} \\
& a_{n}=\alpha_{1} 2^{n}+\alpha_{2} 3^{n}
\end{align*}
$$

wren $n=0$

$$
\begin{gather*}
a_{0}=\alpha_{12} 2^{0}+a_{2} 3^{0} \\
b=\alpha_{1}+\alpha_{2} \tag{III}
\end{gather*}
$$

When $n=1$

$$
\begin{gather*}
a_{1}=\alpha_{1} 2^{1}+\alpha_{2} 3^{1} \\
s=2 \alpha_{1}+3 \alpha_{2} \tag{iv}\\
\alpha_{1}=4 \\
\alpha_{2}=-1
\end{gather*}
$$

\qquad
Substituting the valve of $\alpha-4 \alpha_{2}$ in eq n (ii) $\alpha_{n}=42^{n}-3^{n}$ is the required soln
Q) Derive the sol for recurrence melation

$$
a_{n}=6 a_{n-1}-9 a_{n-2} \text { with } a_{0}=5 \text { p } a_{1}=7
$$

$$
a_{n}=6 a_{n-1}-9 a_{n-2}
$$

The corresponding characteristics equation is

$$
\begin{aligned}
& r^{2}=6 r-9 \\
& r^{2}-6 r+9=0 \\
& (r-3)(r-3)=0 \\
& r=13,3)-1
\end{aligned}
$$

Yore the noels are same so sol in the form

$$
\left.a_{n}=\alpha_{1} 3^{n}+n \alpha_{2} 3^{n}\right)
$$

When $n=0$

$$
\begin{aligned}
& a_{0}=\alpha_{1} 3^{0}+0 \times \alpha_{2} \times 3^{0} \\
& 5=\alpha_{2}
\end{aligned}
$$

When $n=2$

$$
\begin{gathered}
\left.a_{1}=\alpha_{2} \cdot 3^{1}+1 \times \alpha_{2} x_{3}\right) \\
7=\alpha_{2} \cdot 3+\alpha_{2} \cdot 3 \\
7=5 \times_{3}+\alpha_{2} \times 3 \\
7=15+\alpha_{2} \times 3 \\
7-15=\alpha_{2} \times 3 \\
-\frac{8}{3}=\alpha_{2}
\end{gathered}
$$

\qquad

$$
a_{n}=8 \cdot 3^{n}-\frac{8}{3} n \cdot 3^{n}
$$

(3) Denis the explicit formula for the fibonacci Series

$$
f i b(n)=\left\{\begin{array}{c}
n \text { if } n<2 \\
\text { fib (n-1) }+f i b(n-2)
\end{array}\right.
$$

The recurrence relation of the fibonacci series

$$
a_{n}=a_{n-1}+a_{n-2} \quad \text { win } a_{0}=0 \quad a_{1}=1
$$

The comesponding characteristics equation is

$$
\begin{gathered}
r^{2}-r-1=0 \\
\text { On sol sing, } \\
r=2+\frac{r_{s}}{2} \quad r=\frac{1-r_{s}}{2}
\end{gathered}
$$

when rots ono not same the soft in the roof

$$
a_{n}=\alpha_{1}\left(\frac{2+\sqrt{s}}{2}\right)^{n}+\alpha_{2}\left(\frac{1}{2}\right)^{n}-\sqrt{5}
$$

when $n=0$

$$
\begin{gathered}
1=0 \\
\left.\left.a_{0}=\alpha_{1}\left(\frac{1+r_{s}}{2}\right)+\alpha_{2} \right\rvert\, \frac{2-\sqrt{s}}{2}\right) \\
0=\alpha_{1}+\alpha_{2}-1 \\
\alpha_{1}=-\alpha_{2}
\end{gathered}
$$

when $n=2$
\qquad
\qquad

$$
\begin{gathered}
a_{1}=\alpha_{1}\left(\frac{2+\sqrt{s}}{2}\right)^{2}+\alpha_{2}\left(\frac{1-\sqrt{s}}{2}\right) \\
2=\alpha_{1}\left(\frac{1+\sqrt{5}}{2}\right)+\alpha_{2}\left(\frac{1-\sqrt{s}}{2}\right) \\
2=\alpha_{1}+\alpha_{1} \sqrt{s}+\alpha_{2}-\sqrt{s} \alpha_{2} \\
2=1+\sqrt{s}) \alpha_{2}+(1-\sqrt{s}) \alpha_{2} \\
2=1+\sqrt{s})-\alpha_{2}+(1-\sqrt{s}) \alpha_{2} \\
2=-\alpha_{2}-\sqrt{s} \alpha_{2}+\alpha_{2}-\sqrt{s} \alpha_{2} \\
2=-2 \sqrt{s} \alpha_{2} \\
\alpha_{2}=-\frac{1}{\sqrt{s}} \\
\alpha_{1}=\frac{1}{\sqrt{s}}
\end{gathered}
$$

Putting the value in (A)

$$
a_{n}=\frac{1}{r_{s}}\left(\frac{1+r_{s}}{2}\right)^{n}-\frac{2}{r_{s}}\left(\frac{1+r_{s}}{2}\right)^{n}
$$

\qquad
\qquad
\# linear non-homogonons Recurrence volution
\rightarrow A nacurmance relation of the form

$$
a_{n}=a_{0} a_{n-1}+a_{2} a_{n-2}+\ldots .+c_{k n-k R t}
$$

$f(n)$ is said 20 be linear non-nomogeroms recurrence relation
\rightarrow here $c, a_{n-1}+c_{2} a_{n-2}+\ldots \ldots+c_{k} a_{n-2}$ is called associated part of $f(n)$ is called ren-homogenons part.
\rightarrow The sol of associated part is called general sorn (G.S 4 solution of non-homogenons part is particular solution (P.S)
\rightarrow The overall soln of linear non homogenons recurrence relation is the sum of general sol? 4 particwar soln.
$a_{r}=\operatorname{san}-1-6 a_{n-2}+7^{n}$ is a linear non-nomogenons recurrence relation
Q) Find the son of following recurrence relation

$$
\begin{gathered}
a_{n}=\operatorname{san}^{2}-1-6 a_{n}-2+7^{n} \\
a_{n}=\delta_{a_{n-1}}-6 a_{n-2} \\
r^{2}=5 r-6 \\
r^{2}-8 r+6=0 \\
r_{1}=24 y_{2}=3
\end{gathered}
$$

now since the ross are distinct the self is in the form

$$
g_{1} \cdot s=\alpha_{1} \cdot 2^{n}+\alpha_{2} 3^{n}
$$

\qquad
The non-nomogeneons part is

$$
a_{n}=7 n
$$

The $S d^{D}$ of non-nomogenons part is of the
form

$$
a_{n}=0.7^{n} \text { where cis constant }
$$

$$
c \cdot 7^{n}=5 c \cdot 7^{n-1}-6 \cdot c 7^{n-2}+7^{n}
$$

Dividing both sides by 7^{n}

$$
\begin{gathered}
\frac{c \cdot 7^{n}}{7^{n}}=\frac{5 c \cdot 7^{n-1}}{7^{n}}-\frac{6 \cdot c 7^{n-2}}{7^{n}}+\frac{7^{n}}{7^{n}} \\
c=5 c \cdot 7^{-1}-6 \cdot c \cdot 7^{-2}+1 \\
c=5 c \cdot \frac{1}{7}-6 c \frac{1}{49}+1 \\
c=\frac{35 c-6 c+49}{49} \\
49 c=29 c+49 \\
6 / 9 c-29 c=49 \\
c=\frac{49}{20}
\end{gathered}
$$

The paricuitar $5 \Omega^{n}$ is

$$
a_{n}=\frac{49}{20} 7^{n}
$$

The overall son is

$$
d_{n}=\alpha_{n} \cdot 2 n+\alpha_{2} \cdot 3^{n}+\frac{49}{20} 7 n
$$

\qquad
Qroer) Find solution of

$$
\begin{gathered}
\text { 2an }=3 a_{n-2}-a_{n-2}+2^{n} \\
\text { with } a_{0}=2 \quad \text { \& } a_{1}=3 \\
2 a_{n}=3 a_{n-1}-a_{n-2} \\
2 r^{2}=3 r-1 \\
2 r^{2}-3 r+1=0 \\
(r-1)(2 r-2)=0 \\
r=1 \quad r=\frac{2}{2}
\end{gathered}
$$

Now since the root are distinct the sol is in the form

$$
\text { adars }=\alpha_{2} \cdot 2^{n}+\alpha_{2} \cdot \frac{1}{2}^{n}
$$

The nom-nomogenons eon is

$$
a_{n}=2^{n}
$$

the SO^{n} of non-nomogenows part is of $a_{n}=C \cdot 2^{n}$ cohere cisconstant

$$
\text { 2. } c 2^{n}=3 c 2^{n-2}-c \cdot 2^{n}-2+2^{n}
$$

Dividing by 2^{n}

$$
\begin{gathered}
2 c=3 c 2^{-1}-c \cdot 2^{-2}+1 \\
2 c=\frac{3 c}{2}-\frac{2 c}{4}+1 \\
2 c=\frac{6 c-c+4}{4} \\
8 c-5 c=4 \\
c=\frac{4}{3}
\end{gathered}
$$

The particular son^{n} is

$$
\begin{aligned}
& 12 a n=\alpha+\alpha_{2} \frac{1}{2}^{n}+\frac{4}{B} 2^{n} \\
& a n=\alpha_{1}+\alpha_{2} \frac{1}{2}^{n}+\frac{4}{3} 2^{n} \\
& a_{0}=\alpha_{1}+\alpha_{2} \frac{1}{2}^{0}+\frac{4}{3}^{0} \\
& \text { a. } 2=\alpha_{1}+\alpha_{2}+\frac{4}{3} \\
& \frac{3}{3}=\alpha_{2}+\alpha_{2} \text { - } \\
& \begin{array}{l}
a_{n=3} \\
a_{1}=\alpha_{1}+a_{2} \times \frac{1}{2}+\frac{4}{3} \frac{1}{2}
\end{array} \\
& 3=\alpha_{1}+\frac{\alpha_{2}}{2}+\frac{8}{3} \\
& 18=6 \alpha_{1}+3 \alpha_{2}+16 \\
& 2=6 \alpha_{1}+3 \alpha_{2} \\
& \alpha_{2}=0 \\
& \alpha_{2}=\frac{2}{3}
\end{aligned}
$$

the overall son^{n} is

$$
\begin{aligned}
a_{n} & =\frac{2}{3} \cdot 2^{n}+4 / 3^{2 n} \\
& =\frac{2^{n}}{3}+\frac{42^{n}}{3}
\end{aligned}
$$

\qquad
\qquad
3.a) Solve the following recurrence relation

$$
a_{n}=7 a_{n-1}-10 a_{n-2}+16 n
$$

501 n
Associated part.

$$
a_{n}=7 a_{n-1}-10 a_{n-2}
$$

The characteristics $\mathrm{eq}^{\text {? }}$ is

$$
\begin{gathered}
\gamma^{2}-7 \gamma+10=0 \\
\text { or, } \gamma^{2}-5 \gamma-2 \gamma+10=0 \\
(\gamma-5)(\gamma-2)=0 \\
\gamma=2,5
\end{gathered}
$$

The general sol for the dishoct root is of the form

$$
a_{1}=\alpha_{1} \cdot 2^{7}+\alpha_{2} \cdot 5^{4}-a
$$

The non-homogenous part is

$$
a_{n}=167
$$

The particular solution is of the form

$$
\begin{aligned}
a_{n} & =C n+D \\
c_{n}+D & =\frac{7(n-1)-6(4-2)+164}{} \quad \begin{array}{l}
16 n \\
\end{array}=C_{n}+D=7 n-7-6 n+12+16 n \\
e & =16 \quad(1+D=18 n+73 \\
D & =0 \quad c=13 \\
D & =\$ 3
\end{aligned}
$$

Nov,

$$
\begin{aligned}
& a_{1}=\alpha_{1} \cdot 2^{n}+\alpha_{2} \cdot 5^{n}+164 \\
& a_{n}=13 n+13 \\
& a_{n}=\gamma_{1} 2^{n}+\alpha_{2} 5^{n}+13 n+13
\end{aligned}
$$

$s(0)$
ff

$$
\begin{gathered}
a_{1}=5 a_{n-1}-6 a_{n-2}+42 \cdot 4^{7} \\
a_{1}=56 \quad a_{2}=270
\end{gathered}
$$

$S O l^{n}$
Associated part

$$
a_{n}=5 a_{n-1}-6 a_{n-2}
$$

The characterishc e^{2} is

$$
\begin{aligned}
& \gamma^{2}-5 \gamma+6=0 \\
& \gamma^{2}-2 \gamma-3 \gamma+6=0 \\
& \gamma(\gamma-2)-3(\gamma-2)=0 \\
& (\gamma-2)(\gamma-3)=0 \\
& \gamma=2,3 \gamma \equiv-9
\end{aligned}
$$

The general sol for dushnct root os of the form

$$
a_{n}=\alpha_{1} \cdot 2^{n}+\alpha_{2} \cdot 3^{4}
$$

The non-horogenocs part is

$$
a_{2}=42.4^{4}
$$

The particular sol is of the form

$$
\begin{aligned}
& a_{n}=c \cdot 4^{n} \\
& C \cdot u^{n}+D=5(4-1)-6(4-2)+42 \cdot u^{n} \\
& c \cdot 4^{n}+5=5 n-5-6 n+1 / 2+42 \cdot u^{n} \\
& C \cdot 4^{n}+D= \\
& c \cdot 4^{n}+D=f\left(c \cdot u^{n-1}\right)-6
\end{aligned}
$$

$$
\begin{aligned}
& \text { lien= } C n+D \\
& 2^{n}=C \cdot 2^{n} \\
& \text { c. } 4^{n}=5 c \cdot 4^{n-1}-6 c \cdot 4^{n-2}+42 \cdot 4^{n} \\
& \text { or } c=\frac{5 c}{4}-\frac{6 c}{16}+42 \\
& c=\frac{20 c-6 c+672}{16} \\
& 16 c=214 c+572 \\
& 2 c=672 \\
& c=33 \sigma \\
& \therefore \quad a_{n}=336.4^{4} \\
& \therefore \quad a_{1}=\alpha_{1} \cdot 2^{n}+\alpha_{2} \cdot 3^{4}+336 \cdot 4^{4} \\
& a_{1}=56 \\
& 56:=\alpha_{1} \cdot 2^{\prime}+\alpha_{2} \cdot 3^{\prime}+336 \cdot 4^{\prime} \\
& S \sigma=2 \alpha_{1}+3 \alpha_{2}+1344 \\
& 2 \alpha_{1}+3 \alpha_{2}=-1288 \\
& a_{2}=276 \\
& 276=\alpha_{1} \cdot 2^{2}+\alpha_{2} \cdot 3^{2}+336 \cdot 4^{2} \\
& 276=4 \alpha_{1}+9 \alpha_{2}+5376 \\
& 4 \alpha_{1}+9 \alpha_{2}=-5100 \\
& \alpha_{1}=-618 \\
& \alpha_{2}=841.3
\end{aligned}
$$

Graph Theory \qquad
\qquad
\rightarrow Many situation that occur in computer science, physical science, chemical science economics and many other area can be analyzed big using techniques found in a relatively new area of mathematics called as graph theory.
\rightarrow Graph is a discrete structure consisting of vertices and edges
Graph is defined θ by $G=(V, \epsilon)$ where $v=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ called set of vertices $E=\left\{\epsilon_{1}, \epsilon_{2}, \ldots, E_{n}\right\}$ called set of edger
or arcs or $\begin{aligned} & \text { inks. }\end{aligned}$

Here, $V=\{A, B, C, D, E\}$

$$
E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}
$$

\rightarrow In a graph each vertex is represented by a circle or dot and each edge is represented by line or can arrow.
\qquad
\rightarrow Further, each edge is represented by paid of vertices.
Let v_{i} and v_{J} are two vertices connected by edge e_{i}
Then we car write,

$$
\begin{aligned}
& e_{i}=\left(v_{i}, v_{i}\right) \text { oo }\left(v_{i}, v_{i}\right) \\
& \text { eg:- } e_{1}=(A, B) \text { of }(B, A)
\end{aligned}
$$

\rightarrow These pair of vertices are either ordered pair or un-ordered pair.
\rightarrow If the direction is provided for the edge containing pair of vertices then such pair is called ordered pair.
\rightarrow If no such direction is provided then such pair is un-ordered pour. eng:-
(Vi)

fig:- ordered pail
(vi) $\left(v_{i}\right)$
hg:- un-ordered pair
\qquad
In case of ordered pair

$$
\left(v_{i}, v_{T}\right) \neq\left(v_{J}, v_{i}\right)
$$

for un-ordered pairs

$$
\left(v_{i}, v_{i}\right)=\left(v_{i}, v_{i}\right)
$$

\rightarrow Based on these pair if vertices a graph can be divided into two types
(I) Directed graph
(ii) Un-directed graph
(a) Directed graph
\rightarrow if every vertices pair of a graph in ordered one le direction is provided then such graph are called directed graph

fig:- Directed graph
\qquad
\qquad
(b) Undirected graph :
\rightarrow If every pair of vertices of a graph is an un-ordered then such graph are called undirected one.

Fig:- undirected graph
\# Types of graph on the basis of edges
(a) simple graph:-
\rightarrow simple graph consists of ro7-erpty set of vertices and edges having neimer loops or parallel edges

fig:- simple graph.
\qquad
(b) Multigraph
\rightarrow A graph on (V, E) is said to be multigraph such that some of the edges are parallel.
\rightarrow Two or more than two edges having same end points are called parallel edges

fig:. Multigraph
C) Pseudo graph
\rightarrow A graph $G(V, E)$ is said to be pseudo graph if on has both loops and multi edges or loops only

hg:- Pseudo graph
hg:- Pseudo graph
\qquad
\qquad
\# Regular graph (platonic graph)
\rightarrow If every vertex of a graph consists same degree, then such graph are called regular graph

Fig:- Regular graph
\# Degree of vertex
\rightarrow Total number of edges incident on a particular vertex is called it's degree.
\rightarrow Let ' v ' be the vertex then its degree is denoted by $\operatorname{deg}(v)$.
\rightarrow In case of directed graph degree is dehned as sun of in degree and out degree.
\rightarrow Total number of incoming, edges towards a particular vertex is called in degree
\rightarrow Total number of outgoing edges from a particular vertex is called out degree
\qquad
\qquad
\# Adjacency and Incidence
Relationship bet" vertices of a graph is called adjacency.
\rightarrow Nodes that are directly connected by an edges are said to be adjacent nodes.
\rightarrow In case of ordered pairs $\left(v_{i}, v_{\sigma}\right)$ node V_{T} \& adjacent to node V_{i} bo but no f vice versa.
\rightarrow In case of inordered-pair(v_{i}, v_{T}), vT is a djacent to node v_{i} and v_{i} is a dracent to u_{5}
\rightarrow The relationship vertices and edges of a graph is called incidence.
\rightarrow An edge is said to be incident on bath its end point

$$
\begin{aligned}
& \text { e.g: } e_{i}=\left(v_{i}, v_{J}\right) \\
& \text { her } e_{i} \text { is incident }
\end{aligned}
$$

then e_{i} is incident to both v_{i} \& v_{T}.
\# Graph Representation techniques
(a) Adracency matrix
(5) Incidence matrix
(c) Adjacency list
\qquad
\qquad
(a) Adracency matrix

A matrix formed with the kelp of vertices of a graph is called Adjacency matrix.

Let A be the adracency matrix of order ($\mu \times r$) then each element is represented as:
$a_{i r}:\left\{\begin{array}{l}\text { if three there exist an edge } \\ \text { between wertires oistherens }\end{array}\right.$ between vertices o' othercois \&

Graph on

$$
A=\begin{array}{cccccc}
A & A & B & C & D & E \\
A & 0 & 1 & \Phi & 0 & 0 \\
B & \perp & 0 & 1 & \mathbb{1} & 1 \\
C & 1 & \Phi & 0 & \Phi & 0 \\
D & 0 & 1 & 1 & 0 & \Phi \\
B & 0 & \Phi & 0 & 2 & 0
\end{array}
$$

For Directed graph

\qquad
\qquad

	A	B	C	D	C
A	0	1	1	1	0
B	0	0	0	1	1
C	0	0	0	1	0
D	0	0	0	0	1
E	0	0	0	0	0

\# Incidence matrix
A matrix formed with werhcel and edges of a graph is called incidence matrix.

Let I' be the incidence matrix of order $\left(m x^{n}\right)$ then each element of matrix is dehned as

For directed graph

$$
a_{i r}=\left\{\begin{array}{l}
\text { 1 if there exist }>\text { an edge } \\
\text { directed away from bi } \\
1 \text { if there exist an } \\
\text { edge directed towards } \\
\text { a arreowlse }
\end{array}\right.
$$

\qquad

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
A	1	1	0	0	0	0	0
B	1	0	0	1	1	1	0
C	0	1	1	1	0	0	0
D	0	0	1	0	1	0	1
E	0	0	0	0	0	1	1

A	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
B	1	-1	0	0	0	0	0
C	-1	0	0	1	-1	1	0
D	0	1	1	-1	0	0	0
E	0	0	-1	0	1	0	-1

\qquad
\qquad
\# Drow undirected graph for following adjacency matrix.

	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}	1	2	0	0
v_{2}	2	0	1	1
v_{3}	0	1	2	2
v_{4}	0	1	2	0

\# Adjacency list
It is the dynamic representation of a graph.
\rightarrow In an adjacency list, a list $d f$ all adjacent vertex is formed and connected with each other with the help of pointer.

\qquad
\qquad
\# Draw undirected graph for follow adjacency matrix.

	v_{1}	v_{2}	v_{3}	v_{4}
v_{1}	1	2	0	0
v_{2}	2	0	1	1
v_{3}	0	1	2	2
v_{4}	0	1	2	0

\# Adjacency list
It is the dynamic representation of 9 graph.
\rightarrow In an ddpacency list, a list of all adpacert vertex is formed and connected with ead other with the help of painter.

\qquad
\qquad

vertex	Adjacent list	vertex	Adjacent list
A	B, C	A	C
B	A, D, E	B	A, E
C	A, D	C	D
D	B, C, E	D	B
E	B, D	E	D

\# complete Graph
A graph where each vertex are connected to each other is called complete graph.
\rightarrow A complete graph with 'n' verhces is denoted kn_{n}

$$
ध g \quad \mathrm{~K}_{4}
$$

\qquad
\# Draw K_{6} and write down its incidence matron

hg:- complete graph of 6 vertex

| | e_{1} | e_{2} | e_{3} | e_{4} | e_{5} | e_{6} | e_{7} | e_{8} | e_{9} | e_{10} | e_{11} | e_{12} | e_{3} | e_{1} | e_{15} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| v_{1} | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| v_{2} | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
| v_{3} | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 6 | 0 | 0 | |
| v_{3} | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | |
| v_{4} | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | 1 | 0 | 6 | 1 | 6 | 1 | |
| v_{5} | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |

\qquad
\# Bi-partite Graph.
A graph is said to be partite it is vertices of are divided into two parts such that the vertices of first part are connected to vertices of second part but vertices of sam part are not connected.
\rightarrow If all the vertices of first port are connected to all the vertices of second part, then such graph are called complete bi-partile graph.
\rightarrow A complete bi-partile with ' m ' vertices in first part and u-vertices 17 second part is denoted by Kama

$$
e \cdot g: \quad U=\{A, B, C, D, E\}
$$

hg:- complete-bc-partile graph
\qquad
\qquad
\# Sub-Graph
let $\sigma=(0, \epsilon)$ be a graph the sub-ropat of G is denoted by

$$
H=(v, e)
$$

where.
v'ou and

$$
\epsilon^{n} c \epsilon
$$

fig:- Graph G
$G(v, E)$

$$
\begin{aligned}
& V=\{A, B, C, D, E, F\} \\
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}
\end{aligned}
$$

(c)
fig:-5ub-grapuol
sub graph (a), $v=\{A, B, C, D\}$
(b)

$$
\begin{aligned}
& v^{\prime}=\{A, B-C, e\} \\
& e^{\prime}=\left\{e_{1}, e_{2}, e_{5}\right\}
\end{aligned}
$$

(c) $\sigma^{\prime}=\{c, D, E\}$

$$
\begin{aligned}
& \left.e^{\prime}=\left\{e_{4}, e_{5}\right\}, e_{5}\right\}
\end{aligned}
$$

\qquad
\qquad
\# weighted Graph.
If some numerical value (weight) is assigned for the edge of a graph then such graph are called graph.

Fig:- weighted Graph.
\# Spanning Tree
A spanning tree of a graph is a sub-graph of GA' that contain all the vertices of in and does not contain a cycle.

hg:- Graph on

\qquad
\qquad
\# Minimum spanning tree
In minimum spanning tree, the tree with the minimum $\cos t$ is constructed.
\rightarrow The cost of the tree is computed by adding all the weight of the edge included in the spanking time.

Fig:- weighted graph on.

hg: Spanning tree of weight greater
\qquad
\qquad
\# Atginm to construct minimum sp-
\rightarrow Here spanning tree (3) has the minimum cost, they It as the required minimums spanning tree of the given weighted graph on.
\# Algorithm to construct minimums spanning tree a) Prism's Algorithon
(b) Kouskal's Algorithm..
(4)

(a) Prism's Algorithm.

In prism's algorithm we start, with any arbitary vertex for a given graph on. Let U' be the arbitao y vertex then we find all the adjacent vertex of u and form a set containing all the verhces of V.

After that we select the vertex pair with least weight from the set and add if to tree being forward. Let the vertex pair be (u, w)
\rightarrow Now we find all the adjacent vertices of ' w ' and remaining vertices of previoces set.
\rightarrow Then we select the vertex pair with minimum weight and add that vertex pair in our tree being constructed.
\rightarrow During the process of addition of vertex pain, if any vertex with minimum weight forms a cycle it is discarded and we move to the vertex par win next minimum weigh f and add it to the
\rightarrow The process is constincued until all the vertex pair form the set are added to the tree when the set becomes empty, the tree obtained is the minimuen spanning tree.

$$
\begin{aligned}
& \text { vi }=4 \\
& v=20 \\
& v_{4}-v_{4}-v_{2}=9 \\
& v_{5}-v 3=15
\end{aligned}
$$

Using Prion's Algorithm
We start with any arbitary vertex. Let es choose. dow, the adjacent vertex pair of wy ar

$$
\text { ff } \quad \begin{array}{r}
\left(v_{u}, v_{5}\right)=20 \\
\left(v_{u}, v_{r}\right)=25 \\
\left(v_{u}, v_{2}\right)=9
\end{array}
$$

we choose the vertex pair with minimum weight lie. $\left(v_{u}, v_{2}\right)=g$ add if to our tree be constructed.

$$
v_{2}
$$

Now, the adjacent of v_{2} and remaining vertex pair of previous set.
\qquad

$$
\begin{aligned}
& \left(v_{2}, v_{1}\right)=10, \quad\left(v_{v}, v_{5}\right)=20 \\
& \left(v_{2}, v_{3}\right)=12, \quad\left(v_{4}, v_{6}\right)=25 \\
& \left(v_{2}, v_{5}\right)=6
\end{aligned}
$$

$\rightarrow\left(v_{2}, v_{5}\right)=6$ is the vertex pair with minimus weight so weight so we add if fo our tree

\rightarrow The adjacent of v_{5} are

$$
\begin{aligned}
& \left(v_{5}, v_{5}\right)=4 \\
& \left(v_{5}, v_{3}\right)=13 \\
& \left(v_{2}, v_{1}\right)=10 \\
& \left(v_{2}, v_{3}\right)=12 \\
& \left(v_{4}, v_{5}\right)=20 \\
& \left(v_{4}, v_{6}\right)=23
\end{aligned}
$$

The adjacent of u_{1} are

$$
\begin{aligned}
& \left(v_{1}, v_{3}\right)=8 \\
& \left(v_{3}, v_{5}\right)=15 \\
& \left(v_{2}, v_{3}\right)=12 \\
& \left(v_{4}, v_{5}\right)=20 \\
& \left(v_{4}, v_{6}\right)=25
\end{aligned}
$$

\rightarrow Add $\left(v_{1}, v_{3}\right)$ to the tree as if has minimum weight

\qquad
\qquad
\rightarrow Adjacent of v_{3}

$$
\begin{array}{ll}
\left(v_{3}, v_{2}\right)=12 & \left(v_{4}, v_{5}\right)=25 \\
\left(v_{3}, v_{5}\right)=13 & \\
\left(v_{4}, v_{5}\right)=20
\end{array}
$$

\rightarrow The vertex pair $\left(v_{3}, v_{2}\right)=12$ with minimuer cost foo a cycle so we discard it and make on with the vertex pair $\left(U_{3}, v_{5}\right)=15$
$\rightarrow\left(v_{3}, v_{5}\right)$ also forms a cycle so we discard if ($\left.v_{4}, v_{\sigma}\right) \quad " 1$
\# Kruskal's Algorithm \qquad
\rightarrow In Kruskal's algorithm we list all the pair of vertices of given graph in ascending order of their weight 1.e. vertex pair with least weight is the first pair of the list, the pair with the next minimum is the second pair and so on.
\rightarrow Then, we choose the vertex pair with least weight and add it to the tree being forward a formed after that the vertex pair with next minimum weight from the list is selected and added to the tree and so on.
\rightarrow During the process of adding vertex pair if any vertex pair with minimum weight forms a cycle, we discard of that vertex pair.
\rightarrow This process is continued until the lost becomes when list becomes empty the tree obtained is the required minimum spanning tree.

hg:- weighted graph.
\qquad
solution \qquad
Arranging the vertex pair according ho
reid weight in ascending order their weight in ascending order

$$
\begin{aligned}
& \left(v_{5}, v_{5}\right)=4 \\
& \left(v_{2}, v_{5}\right)=6 \\
& \left(v_{1}, v_{3}\right)=8 \\
& \left(v_{2}, v_{4}\right)=9 \\
& \left(v_{1}, v_{2}\right)=10 \\
& \left(v_{2}, v_{3}\right)=12 \\
& \left(v_{3}, v_{5}\right)=15 \\
& \left(v_{4}, v_{5}\right)=20 \\
& \left(v_{4}, v_{6}\right)=25
\end{aligned}
$$

Here, $\left(v_{s}, v_{r}\right)=4$ is the least weight vertex pair, so we add if to - our tree being' constructed
\rightarrow Add $\left(v_{2}, v_{5}\right)=6$ in our tree

$\rightarrow\left(v_{1}, v_{3}\right)=8$ is the next minimus weight so add it to the tree
\qquad
\qquad

$\rightarrow\left(v_{2}, v_{4}\right)=9$ is the next candidate vertex pair to be added in the tree.

\rightarrow Add $\left(v_{1}, v_{2}\right)=10$ in our tree being constructed.

\qquad
\qquad
\rightarrow vertex pair $\left(v_{2}, v_{3}\right)=12$ form 8 a cycle so we discard it.
\rightarrow vertex pair $\left(V_{3}, V_{5}\right)=15$ forms a cycle so discard it.
\rightarrow vertex pair $\left(V_{u}, V_{5}\right)=20$ forms a ty. ale so discard it.
\rightarrow vertex pair $\left(V_{U}, V_{6}\right)=25$ forms a cycle so discard if.
since the list is empty, the fincel minimum spanning tree

Total cost is $10+9+8+6+6=37$
\# Shortest Path Algorithm (Dijkstra's Algorithm)
\rightarrow Dijkstra's Algorithm is used to find the shortest distance between source and destination node.

For this we frost assign the source rode distance by $z e r 0$ and other nodes by infrity. IS so that to indiccete distaxe from source to other nodes yet to be calculated.
\rightarrow Then we, calculate the distance of all the adjacent nodes of source node and select the adjacent node with least distance.
\rightarrow Let this adjacent node be ' V ' such that its distance from source node is L(U).
\rightarrow After that we find the adjacent node of ' v ' and choose the rode with the least distance. Let that node be w' with distance. from ' v ' os $L(u, \infty)$. The distance of ' ω ' from starting rode is $L(u)+L(u, \omega)$
\rightarrow For the node ' ω ' there may be previocesly calculated distance. Let that distance be $L(\omega)$.
\qquad
\qquad
\rightarrow Now we compare the previously calculate distance with newly calculated distance and if the new calculated distance is smallest one, we discard the previous h calculated distance.
1.e.

$$
L(\omega)>L(v)+L(\nu, \omega)
$$

the?

$$
L(\omega)=L(v)+L(v, \omega)
$$

\rightarrow This process is conhnued unhl all patly for the deshnahon hades are calculated Then horal gives path given by the algorithm . 19 " the shortest both.
eg:

\qquad

Initially

vertex	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
Label	0	∞	α	∞	∞	∞

The adjacent of V_{1} are V_{2} and V_{3}. Then their distance from v_{I} is

$$
\begin{aligned}
L\left(v_{2}\right) & =L\left(v_{1}\right)+L\left(v_{1}, v_{2}\right) \\
& =0+4=4 \\
L\left(v_{3}\right) & =L\left(v_{1}\right)+L\left(v_{1}, v_{3}\right) \\
& =0+2=2
\end{aligned}
$$

$\left|\begin{array}{c|c|c|c|c|c|c|}\text { vertex } & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{0} \\ \hline \text { label } & 0 & 4 & 2 & \infty & \infty & \infty\end{array}\right|$

Here length of v_{3} is small, so, we expand The adjacent modes of v_{3} i.e. v_{2}, v_{4} and v_{s}

$$
\begin{aligned}
& L\left(v_{2}\right)= L\left(v_{3}\right)+L\left(v_{3}, v_{2}\right) \\
&= 2+1 \\
&=3
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
L\left(v_{4}\right)= & L\left(v_{3}\right)+L\left(v_{3}, v_{4}\right) \\
& =2+7=9 \\
L\left(v_{5}\right) & =L\left(v_{3}\right)+L\left(v_{3}, v_{5}\right) \\
& \because 2+8=10
\end{aligned}
$$

Here, the length $L(2)$ is small than the prevorisly one so we replace the old path cost by new ore.

$$
\begin{array}{|c|c|c|c|c|c|c|}
\hline \text { vertex } & v_{1} & u_{2} & u_{3} & v_{4} & v_{5} & v_{6} \\
\hline \text { label } & 0 & 3 & 2 & 9 & 10 & \sim
\end{array}
$$

Herr, length of v_{2} is small so, we expand the adjacent node of v_{2} i.e v_{4}

$$
\begin{gathered}
L\left(V_{u}\right)=L\left(v_{2}\right)+L\left(V_{2}, \forall_{u}\right) \\
=3+5=8
\end{gathered}
$$

Here, $L\left(v_{u}\right)$ is small that previously calculated one so we replace the old path cost by new path cost

$v_{\text {vertex }}$	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
Label	0	3	2	8	10	v_{2}

Here, length of $v u$ is small, so, we expand the adjacent rode of V_{4} tee V_{5} or V_{6}

$$
\begin{aligned}
L\left(v_{B}\right) & =L\left(v_{u}\right)+L\left(v_{u}, v_{6}\right) \\
& =8+10=18
\end{aligned}
$$

\qquad
\qquad

vertex	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
label	0	3	2	8	10	18

(Here, t'f $l\left(v_{5}\right)$ is small. That previously) calculated ane so we replace th expand the adjacent mode of v_{5} te ie v_{6} or expanding adjacent of $V_{s}{ }_{a s}$ or 1 has minimum pash cost rev

$$
\begin{aligned}
L\left(V_{6}\right) & =L\left(U_{5}\right)+L\left(U_{5}, V_{6}\right) \\
& =10+12=22
\end{aligned}
$$

Here, L (us) is greater that previously calculated so, we do rot replace the old path cost by new path cost
Lester
\qquad
\# planar Graph
\rightarrow A graph drawn in the plane where no edges intersects to each other is called planar graph.
\rightarrow A planar graph is divided into number of region called faces.
\rightarrow There are twa types of faces, bounded and un-bacended faces.
\rightarrow Region formed by closed boundary of vertices to edges are called bounded faces.
\rightarrow A plane in which the graph is drawn is culled un-bounded faces.

in. Non-planar Graph

Fig:- Planar Graph
\qquad
\qquad
Q. Draw complete planar graph for 5 vertices

ot doesn't exist for s vertical
ur euler's formula for planar graph
\rightarrow If the total number of vertices of a planar graph is V ' edges '
$V \cdot E+F=2$

$$
V \cdot E+F=2
$$

Proof:-
\rightarrow we use the mathematical inductarnto prove that formula we have, $V-E+F=2$
Basic step

$$
\begin{aligned}
& E=0 \\
& V=1 \quad E=0 \quad F=1
\end{aligned}
$$

So,

$$
\begin{gathered}
V-E+F \\
=1-O+1 \\
=2
\end{gathered}
$$

which is true.
\qquad
when $E=1$
case 1

$$
\begin{aligned}
& V=2 \quad E=1 \quad F=1 \\
& V-E+F \\
& 2-1+1 \\
& =2
\end{aligned}
$$

case II.

$$
\begin{aligned}
& V=1, E=1, F=2 \\
& V-E+F \\
& =1-1+2 \\
& =2
\end{aligned}
$$

which is true
Induchve step
\rightarrow We assume that the formula is true for ' e ' number of edges and toy to prove it for $(\theta+1)$ number of edges.
pase case f.
By adding the edges the number of verhces remarks the same but number of faces increases

\qquad
Let V^{\prime}, E^{\prime} and ' F^{\prime} be the verhces, edges and faces of the newly formed graph respechuel 1.e. $V^{\prime}=V \quad E^{\prime}=E+1, \quad F^{\prime}=F+1$

Nose,

$$
\begin{aligned}
& V^{\prime}-E^{\prime}+F^{\prime}=2 \\
& V-(E+1)+(F+1)=2 \\
& \text { or, } V-E-1+F+1=2 \\
& \therefore \quad V-E+F=2
\end{aligned}
$$

case : 1
By adding the edges the number of vertices increases but faces remains the same

Let V^{\prime}, f^{\prime} and f^{\prime} be the total number of vertices and faces of newly formed graph respechuely

Now,

$$
\text { 1.e. } V^{\prime}=V+1 \quad, \quad E^{\prime}=E+1, \quad F^{\prime}=F
$$

$$
\begin{gathered}
v^{\prime}-e^{\prime}+F=2 \\
(U+1)-(E+1)+F=2 \\
v+1-E-1+F=2 \\
v-E+F=2
\end{gathered}
$$

which is true.
\qquad
\qquad
Hence, the euler's formula for planar graph 1.e. $V-E+F=2$ is valid using mathematical induction.
ais sean Construct a graph having 9 vertices whose degree sequence is $2,2,2,3,3,3,4,4$ \& 5 . Also identify the total number of faces and edger.

$$
\rightarrow
$$

\qquad
Theorem 1
The sum of degree of all the vertices of a given graph is equal to the twice the numbed of edges.

$$
\begin{aligned}
& \text { 1.e. } \\
& \operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right) \cdots+\operatorname{deg}\left(v_{n}\right)=2 e \\
& \sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 e
\end{aligned}
$$

$$
\begin{aligned}
\text { sum of degree }= & 2+3+4+5+2 \\
& =1 \sigma
\end{aligned}
$$

00

$$
\begin{aligned}
& 2 \times \text { no. of edges } \\
& =2 \times 8 \\
& =16
\end{aligned}
$$

Theorem 2
For any graph these exist even number of vertices having odd in degree.
we have,

$$
\begin{gathered}
\sum_{i=2}^{n} \operatorname{deg}\left(v_{1}\right)=2 e \\
\text { or, } \operatorname{deg}\left(v_{\text {even }}\right)+\operatorname{deg}\left(v_{\text {odd }}\right)=2 e
\end{gathered}
$$

\qquad
\qquad
Q. For a planar graph with 20 vertices and degree of each vertex is 3. Find total number of region in the graph.
we have,

$$
\text { no . of vertices }(v)=20
$$

degree of each vertex $=3$
Total degree $=$ no. of vertices l degree of vertices

$$
\begin{array}{r}
=20 \times 3 \\
=60
\end{array}
$$

we know,

$$
\begin{gathered}
\sum_{i=2}^{n} \operatorname{deg}\left(v_{i}\right)=2 e \\
60=2 e \\
e=60 / 2 \\
\therefore \quad e=30
\end{gathered}
$$

For planar graph using Euler's formula

$$
\begin{gathered}
V-E+F=2 \\
20-30+F=2 \\
F=2+10 \\
F=12
\end{gathered}
$$

\therefore Total number of region in a graph is 12 .
\qquad
\# Euler's graph
\rightarrow A graph that contains Euler's fycle is called Euler's graph.
\rightarrow euler's cycle is a closed path that is formed by visiting every edge of the graph exactly once and terminates in the vertex where we started to move.

Here, $v_{1} e_{2} v_{3} e_{4} v_{4} e_{6} v_{5} e_{5} v_{3} e_{3} v_{2} e_{1} v_{1}$ is a Euler cycle.
\# Hamiltonion Graph (Hamilton Graph)
\rightarrow A graph that contains Hamilton cycle is called Hamilton graph.
\rightarrow Hamiltonion cycle is a closed path that is formed by visiting every vertex of a graph exactly once and terminates in the vertex from where we started to move.
\qquad
\qquad

Here, $v_{1} e_{7} v_{u} e_{5} v_{5} e_{5} v_{1} e_{1} v_{2} e_{1} v_{1}$
Q. What are the difference between euler's graph and Itamiltonion graph.
\qquad
\# Euler's theorem
A graph in' consists of Euler's cycle if and only if every vertex of G has even degree.

P: A Graph in' consists of Euler's cycle Q: Every vertex of ' σ ' has even degree.

$$
P \leftrightarrow Q
$$

1 st part
If a graph in' contains a euler cycle then every vertex of on has even degree.
$2^{\text {nd }}$ part
\qquad
\qquad
If a graph ' G ' contains euler cycle then every vertex of ' 6 ' has even degree.

Proof:-
\rightarrow We know that euler's cycle is a continuous path that starts with any arbitary vertex and ends at that vertex from where we started to move Furthermore, it is formed by visiting every incoming and one-out going edges for every vertex This contributes degree 2 for each vertex which is even.
\rightarrow It a vertex is repeated or visited twice, it provides further degree 2 , to that vertex which is also even.
\rightarrow It is also true for starting vertex since when the continuous path starts it adds degree ' 1 ' to that vertex and when it ends to that vertex it adds further degree ' I ' making the degree of vertex ' 2 ' which is ever
\rightarrow Hence we can say that every vertex of 'G has even degree.
\qquad
second part
If every vertex of ' G ' has even degree then it contains. Euler's cycle.

Proof:-
To prove the statement we need to search for the continuous path that is formed by visiting every edges exactly once and ends in the vertex from where we started.

\rightarrow Let us start with any arbitary vertex, we know that its minimum degree is 2 , we can soy that there may exists an outgoing edges from this vertex to its adjacent vertex.
\rightarrow This case may exist for all the vertices of a graph.
\rightarrow By processing this we find a path in whin, every edge is included and ends in the arbitory vertex from where we started, thus, we can
\qquad
\qquad
say that the euler's cycle exists.
\rightarrow But there may be the case, where cycle may form in part of the graph. In this case we split the given graph into multiple sub-graph by taking reference of common. vertex.
\rightarrow Then we form different cycle in each sub-graph and merge thew and resulting cycle is the required euler's cycle.

Graph connechvity
(1) Walk:- A walk in a graph is a finite order set ' w ' whose elements are alternahuely verhces and edges.

\rightarrow The number of edges appearing in the sequence of walk is the length of walk
\rightarrow If the length of calk is zero 1.e. coalk has tho edges, it contains only one vertex and is called trivial walk.
\qquad
\rightarrow A walk is closed if it starts and ends at the same vertex otherwise walk is open -
(ii) Trial

A walk wo (u, v) in which all edges are distinct are called trial
(vii) Path

A walk in which all the vertex and edges are dishnct are called pash.
(1) Circuit

A closed trial which contains at least three edges is called circuit
\qquad
Theorem:-
A graph ' σ ' contains culerion, trail if an only if two vertex of a G contains add edges.
\Rightarrow last part
If a graph contains eulerian Trail then exactly two vertex of 'In' has odd degree.
$2^{\text {nd }}$ part
If exactly two vertex of 'In' has odd degree then G contains eulerian Trial.

proof of $1^{\text {st }}$ part
\rightarrow We know that euler trail is the conhnuout path that starts with one arbitary vertex and ends with other arbitary vertex whorls edges being distinct.
\rightarrow Now, if a graph contains eulerian trail
say from 'a 'to z', then it must pass throw every edge exactly once.
\rightarrow Ln this scenario, the first edge on the trail contributes one to the degree of vertex ' a ' and at all other time when the edges passes through vertex 'a' it provides degree ' 2 ' for ' a '. Hence we can sly 'a' has add degree.
\rightarrow similarly, The last edge in the path is coming to ' z ' which contributes ' I ' degree to 2 , all the other time the edges provides degree? one for incoming and one for outgoing making'
degree of ' z ' odd degree of ' 2 ' o्वर्d
\rightarrow All other vertices other than ' a ' and ' z ' have even degree, since the edges in these vertex enters and leaves contributing degree 2 every hume.
\rightarrow Hence, in the connected graph 'Gs' having eulerian trail, exactly two verhces contains odd degree.
second part
If exactly two vertices of ' G ' has odd degree then G^{\prime} contains eulerian trail.
\qquad
\qquad
Proof:-
Let us consider two verhces d ' and ' 2 ' has odd degree.
\rightarrow Now consider another graph then adds an edge $\{a, z\}$ to the original part graph, then the newly formed graph have every vertex with even degree. So there exist an Euler's cycle in a new graph.
\rightarrow The removal of the new edge gives the eulerial trial in the original path.
\rightarrow Hence if exactly two verhces of 'on' has odd degree then σ^{\prime} contains Eulerian trial.

hg:. Two verhces with odd degree.

Fo:- Euler's cycle (cue ry veter.)
\qquad
\qquad
\# Show that for a complete graph with ' n 'vertices the number of edge is given by $\frac{n(n-1)}{2}$
solution

Let us consider a graph with ' n ' vertices since the graph is complete each vertex are connected to each other by distinct edges so, the total number of degree for each vertex is $(n-1)$

The sum of all the degree of a graph ce giver by

$$
\frac{\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\cdots+\operatorname{deg}\left(V_{n}\right)}{(n-1)+(n-1)+\cdots+(n-1)}
$$

for n-verhces
$n(n-1)$ is to total degree.
Again,
We know that the sum of all the degree of verhces is equal to twice the muser of edges.
\qquad

$$
\begin{aligned}
& \text { 1.e. } \sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 e \\
& n(n-1)=2 e \\
& e=\frac{n(n-1)}{2} \text { proved// }
\end{aligned}
$$

\# Prove or disprove a complete graph with 5 verhces cannot be planar graph"
\# IF ' G_{n} ' is a connected planar graph with ' e ' edges and ' v ' verhces where $v \geq 3$ then

$$
e \leq 3 v-6
$$

Finite state Automata \qquad
A finite state machine (FSM) is defined mathematically by 5 tuple.

$$
M=(Q, 1,0, F, G)
$$

where,
$Q=$ Finite set of states
$I=$ finite set of Inputs
$0=$ Finite set of outputs
$F=$ transition funchon
$G_{n}=$ output relahon
F.g:-

Fan as an FSM

$$
\begin{aligned}
& Q=\{o n \text { off }\} \\
& I=\{\text { pres }\}\} \\
& O=\{\text { fan on, fan off }\}
\end{aligned}
$$

F consists of

$$
\begin{aligned}
& \text { lists of } \\
& \text { (on, press) } \rightarrow \text { fan off } \\
& \text { (off, press) } \rightarrow \text { fan on }
\end{aligned}
$$

On consists of

$$
\begin{aligned}
& \text { consists of } \\
& \text { Con, press) } \rightarrow \text { (off, fan off) } \\
& (\text { off, press }) \rightarrow \text { (on, fan on) }
\end{aligned}
$$

\qquad
\qquad
\# Terminology used in FSM
(1) Alphabet:- It is the collection of input symbols
of is denoted by \leqslant
eg:- binary equiv alphabet $=\{0,1\}$
(ii) String:- it is the combination of multiple accurance of input symbols. It is denoted by w.

$$
\text { e.g:- } \quad \omega=0010,110110 \ldots
$$

(iii) Empty string:- do occurance of input symbol. gt is denoted by epsilon.
i.e.e.
(10) Language:- The collechon of all possible string over some given alphabet. it is denoted by L.

$$
\text { e.g:. } L=\{0,1,11,001,0010, \ldots\}
$$

\qquad
\qquad
\# Design a FSM that accepts a string that starts with OI.
$501 ?$
The finite state machine M can be defined as

$$
\begin{aligned}
& M=\{Q, 1,0, F, G\} \\
& I=\{0,1\} \\
& O=\{01,0100, \ldots\} \\
& \quad
\end{aligned}
$$

$$
0=\{\ldots\}
$$

\qquad

$$
\begin{gathered}
F=\text { consists of } \\
\delta(A, 0) \rightarrow B \\
\delta(B, 1) \rightarrow C \\
\delta(C, 0) \rightarrow D \\
\delta(C, 1) \rightarrow E \\
\delta(D, 1) \rightarrow D \\
\delta(F, C) \rightarrow E
\end{gathered}
$$

Gr consists of

$$
\begin{gathered}
(A, 0) \rightarrow(0, B) \\
(B, 1) \rightarrow(1, C) \\
(C, 0) \rightarrow(0, D) \\
(D, 0) \rightarrow(0, F) \\
(C, L) \rightarrow(I, E) \\
(E, 1) \rightarrow(1, F) \\
0=\{07,010110 \ldots\}
\end{gathered}
$$

\# Types of FSM
(1) Finite state machine without output (11) Finite state machine with outputs $l)$ finite state automate.
\qquad
\# Finite state Automata
\rightarrow A finite state automata is a mathematical model used to determine whether a string is accepted oo not.
\rightarrow Due to this reason it is also called language recognizer.
\rightarrow Mathematically $F S A$ is defined as:

$$
M=\{Q, E, \delta, 90, F\}
$$

where,
$Q=$ Finite set of states
$\Sigma=$ finite set of inputs
$\delta=$ transition funchon that takes too argument and returns an argument
The transition function is of the form

$$
\begin{aligned}
& Q \times(90, I) \rightarrow 9_{2}
\end{aligned}
$$

$q_{0}=$ initial state or starting state.
$F=$ finite set of final state or accepting state.
\qquad
Eg
GSA

$$
\begin{aligned}
& M=\left\{Q, \delta, q_{0}, F\right\} \\
& Q=\left\{q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\}
\end{aligned}
$$

δ consists of:.

$$
\begin{aligned}
& \delta\left(q_{1}, 0\right) \rightarrow q_{1} \\
& \delta\left(q_{1}, 1\right) \rightarrow q_{2} \\
& \delta\left(q_{2}, 0\right) \rightarrow q_{3} \\
& \delta\left(q_{2}, 1\right) \rightarrow q_{2} \\
& \delta\left(q_{3}, 0\right) \rightarrow q_{2} \\
& \delta\left(q_{3}, 1\right) \rightarrow q_{2} \\
& q_{0}=q_{1} \\
& F=q_{2}
\end{aligned}
$$

hg:. Finite state Automate
\qquad
\qquad
\# Transition Diagram and Transihon Table
\rightarrow The representation of FSA can be done using transition diagram and transition table.
a) Transition Diagram
\rightarrow gt is represented using the weighted directed graph where states are represented by vertices.
\rightarrow Transition from one state to another is represented directed graph.
\rightarrow value given to each edge is its input.
\rightarrow starting state are represented by single circle by pointing an arrow head and final rotate is represented by double circle.
b) Transition Table
\rightarrow gt is a tabular representadon of transition function of finite automat
\rightarrow Generally states are arranged in rows and inputs are arranged in column
\rightarrow The intersechon of each row and columns i.e. each cell represents the next state.
\qquad

ag. Finite state Automat (Tronsihon Diagram)

Q / Σ	0	1
q_{2}	q_{2}	q_{2}
q_{2}	q_{2}	q_{2}
q_{3}	q_{2}	q_{2}

Fig:- Transition table of a finite automat.
\# Processing a string by $F A$

Fig:- Block diagram of FA.
\rightarrow The processing of $F A$ consists of
(1) Input tape
(ii) Reading head
(III) Finite control
\rightarrow Input tape of FA (Finite automat) is responsible for storing the symbol of input string. It is divided into number of square cell, each cell stores the symbol of input string.
\rightarrow Reading head scans the symbol from the input tape, each cell at a time in one direchon only, either from left to right or right to left.
\rightarrow The processing of $F A$ is controlled by finite control te. We current state, next state obtained after each transition fanchon must be defied in the finite control.
\rightarrow Therefore, we say that finite control is also responsible for giving next state regularly.
\Rightarrow Initially the reading head is placed at the left most cell of input tape and then it scans each cell in the defined director
\rightarrow when the string becomes empty and if the
\qquad
finite control gives only of the defined final states as the next state, the string is said to be accepted otherwise rejected.
\# Consider the following FA and check where the stoning $\omega=001110100$ is accepted on rejected.

solution

$$
\begin{aligned}
& \delta\left(q_{1}, 0\right) \rightarrow q_{1} \\
& \delta\left(q_{1}, 1\right) \rightarrow q_{2} \\
& \delta\left(q_{2}, 0\right) \rightarrow q_{3} \\
& \delta\left(q_{2}, 1\right) \rightarrow q_{1} \\
& \delta\left(q_{3}, 0\right) \rightarrow q_{3} \\
& \delta\left(q_{3}, 1\right) \rightarrow q_{2}
\end{aligned}
$$

Given strong

$$
\omega=00+110100
$$

\qquad

$$
\begin{aligned}
\delta\left(q_{1}, \varnothing(01110100)\right. & \rightarrow\left(q_{1}, q_{1} 120100\right) \\
& \rightarrow\left(q_{2}, 1110100\right) \\
& \longrightarrow\left(q_{2}, 110100\right) \\
& \rightarrow\left(q_{1}, 10100\right) \\
& \rightarrow\left(q_{2}, 0100\right) \\
& \rightarrow\left(q_{2}, 100\right) \\
& \rightarrow\left(q_{3}, 0\right) \\
& \longrightarrow\left(q_{3}, \epsilon\right) \\
& \left.\rightarrow q_{3}\right\}
\end{aligned}
$$

Hence, 93 is the final state of the provided FA so the given string $\omega=001110100$ is accepted by green acetorata.
\# Types of Finite Automat
(1) Deterministic finite Automata $(D F A)$
(ii) Non-Deterministic Finite Automata (NOFA)
(a) DFA
\rightarrow In DFA for each input symbol, one can determine the state to which the machine will move.

$$
\begin{aligned}
& \Rightarrow \text { similar to } F S A \\
& M=(Q, \Sigma, \delta, 90, F)
\end{aligned}
$$

\qquad
\qquad
$Q=$ set of finite number of states
$\Sigma=$ set of finite number of inputs
$\delta=$ transition function of the form

$$
Q \times \sum \rightarrow Q
$$

$9=$ starting state
$F=$ set of final stater.

$$
f g:-D F A
$$

(b) NDFA

In NDFA For a particular input symbol the machine can move to any combination of states in the machine
\rightarrow In other word the exact state to whit the machine moves cannot be deterunew finite automat.
\rightarrow formal definition of NDFA,

$$
M=\left(Q, \sum, \delta, 90, F\right)
$$

The transition funchon is

$$
Q \times \Sigma \rightarrow 2^{Q}
$$

hg:- NDFA
\# ara to DFA conversion
\rightarrow We use sub-set construchon method to convert in $N F A$ into DFA
steps
\rightarrow construct a transition table of given FA
\rightarrow Identify all the new states in Term of input statement.
\rightarrow find the transition for each new states in term of input symbols
\rightarrow The process is continued until tronsition for all the new states are identified.
\rightarrow finally drown a transition diagram by using all states obtained.
\qquad
\qquad

fig. NFA
\# Regular Expression:-
\rightarrow An expression used to generate string for a finite automata is called regular expression.
$\rightarrow R E$ is also called language generator.
\rightarrow A Regular Expression is reciersively defined
(a) Empty state (ϕ), eunpty string (ε) and symbol of input alphabet are regalar expression.
(b) Let R_{1} and R_{2} be regular expression then union of R_{1} and R_{2} denoted by $R_{1}+R_{2}$ is also RE.
(c) Let R_{1} and R_{2} be regular expression then concahnahon of R_{1} and R_{2} denoted $b y$ $R_{1} \cdot R_{2}$ is also R_{E}.
\qquad
\rightarrow Let R be regular expression then Kleen dosure of R denoted by R^{*} is also regular expression.
eg:-
(1) $(0+1)^{*}=\{\epsilon, 0,1,00,101,0010 \ldots$?
(11) $0^{*}+1^{*}=\{\varepsilon, 1,60,117,0000, \cdots \cdot\}$
(iii) $(01)^{*}=\{6,01,0101,010101, \ldots$.
(i) $\sigma^{*} \cdot 1^{x}=\{€, 0,1,01,0011,0111, \cdots$.
(2) $3.1^{*}=\{1,11,1111, \ldots$ \}
\# Write a RE that generates the string that starts with ' a ' and ends with 'bb' over $\{a, b\}$.

3017

$$
\frac{a}{R_{B}(a+b b)^{*}}=a, b b, a a, a b a a b b
$$

$$
R_{E}=a(a+b)^{*} b
$$

\qquad
\# RE to FA
\rightarrow For every $R E$ there exist a path from inion state to foal state such that path is labelled with that regular expression.

$$
\begin{align*}
& \text { egg } \sum=\{0,1\} \\
& R \in \rightarrow 0+1 \\
& \rightarrow \text { (90) } 0+1 \tag{590}
\end{align*}
$$

$$
\text { RE O. } 1
$$

$$
\rightarrow(90)-\left(91_{1}\right) \rightarrow(95)
$$

iii) $R \in \rightarrow O^{*}$

\# Drow FA for following $R E$
(a) $a(a+b)^{*} b b$
(b) $01(10+11)^{x} 2$
\qquad
\qquad
(a) $a(a+b)^{*} b b$
sol
(90) $\left.a \cdot(a+b)^{*}-b b\right)(9 f)$
(90) $\rightarrow 9_{2}$
(90) $a \times(9 t) \xrightarrow{(a+b)^{*} b b} \times(9 f)$
(90) $a,(92) \frac{(a+b)^{*}}{9^{5}} \cdot\left(9_{2}\right) \frac{q^{5}}{}$
(90) $a=(91) \frac{(a+b)^{*}}{}+(92) \frac{b}{a}-(94)$
(90) $\xrightarrow{a}(91) \xrightarrow{c},(94) \xrightarrow{a^{b}}(92) \xrightarrow{(a+b)}(93) \xrightarrow{b}(9 f)$
(90) $a+\left(a_{2}\right) b+\left(a_{3}\right) a+a_{f}^{a+b}$
(90) \xrightarrow{a} al $_{1}^{(u+b)} \xrightarrow{\text { or }}\left(9_{3}\right)-b \rightarrow(a c)$

(6.b)

$$
\begin{aligned}
& 01(10+11)^{* 1} \\
& \text { (90) } \xrightarrow{\left.01(10+11)^{*}\right)} 9 \\
& \text { (90) } 0 \rightarrow 99^{1} \xrightarrow{(10+11)^{*}} 9^{1} \rightarrow 9 f \\
& (90) \xrightarrow{0}\left(9_{1} \xrightarrow{1} 9^{(10+11)}-1 \rightarrow(9 f 7\right. \\
& \text { (90) } \rightarrow\left(91-1 \rightarrow(92)^{2} \rightarrow(9 f)\right. \\
& (90)-1 \rightarrow(91) 1
\end{aligned}
$$

Types of Grammar (chomsky Hierarchy)
(1) Unrestricted grammar
(ii) Context sensihue grammar
(iii) context free grammar
(v) Regular grammar
\rightarrow If no restriction is applied. to the producho rule of a grammar, then it is called unverare unrestricted grammar.
\rightarrow A grammar is said to be context sensitive. if it's produchon rule is of the for m

$$
\omega_{1} \alpha \omega_{2} \rightarrow \omega_{1} \beta \omega_{2}
$$

where ω_{2} and ω_{2} are called context of α and β and $\alpha, \beta \in V$
and w_{1} and $w_{2} c(\cdot \cup \cup \varepsilon)^{*}$, string of terming and non-terminals.
eg

$$
\begin{gathered}
A B \rightarrow A b B \\
A \rightarrow b C A \\
B \rightarrow b .
\end{gathered}
$$

\rightarrow A grammar is said to be context free if it's produchon rule is of the form

$$
\alpha \rightarrow \beta
$$

where $\alpha \in V$ and $\beta \in(V \omega \Sigma)^{x}$
eg:

$$
\begin{gathered}
A \rightarrow a / a B \\
B \rightarrow A C
\end{gathered}
$$

\rightarrow A grammar is regular if. its prodachan
rule is of the form.
don-terminal \rightarrow exactly ane terminal
$O R$,
Won termal \rightarrow exactly one terminal follow t by one non-teominal.
eg:-

$$
\begin{aligned}
& s \rightarrow a \\
& s \rightarrow a A
\end{aligned}
$$

fig:- Grammar with its corresponding
mathewathcal model. mathenchical mode.
\# Derivation
\rightarrow The process of generating a string by using sequences of produchon rules is called derivation
\rightarrow gt is also ko known as parsing
Types of Derivation
(1) Left most derivation
(ii) Right most derivation
\rightarrow In left most derivation at each step, the production rules for left-most non. terminal is used, whereas m right most derivation at each step, the production rules for right most non-terminal is used.
\# consider a Grammar

$$
\begin{aligned}
O_{n} & =\{V, \Sigma, R, s\} \\
v & =\{5, A, B\} \\
\Sigma & =\{a, b\}
\end{aligned}
$$

R consists of

$$
\begin{aligned}
& S \rightarrow a A S / a S / b \\
& A \rightarrow b B / a \\
& B \rightarrow a A / b
\end{aligned}
$$

starting symbol=5

$$
\omega=a b a a a b
$$

LMD

$$
\begin{aligned}
& s \rightarrow a A S \quad[\because s \rightarrow a A S] \\
& \rightarrow a b B S \quad[\because A \rightarrow b B] \\
& \rightarrow a b a A S[\because B \rightarrow a A] \\
& \rightarrow a b a a s \quad[\because A \rightarrow a] \\
& \rightarrow a b a a a s[\because s \rightarrow a s] \\
& \rightarrow a b a a a b[\because s \rightarrow b]
\end{aligned}
$$

RMD

$$
\begin{aligned}
-s & \rightarrow a A s \quad[\because S \rightarrow a A S] \\
& \rightarrow a A a s[\because \because S \rightarrow a s] \\
& \rightarrow a A a b[\because S \rightarrow b] \\
& \rightarrow a A a b \\
& \rightarrow a b B a b[\because A \rightarrow b B] \\
& \rightarrow a b a A a b[\because B \rightarrow a A] \\
& \rightarrow a b a a a b[\because A \rightarrow a]
\end{aligned}
$$

\# Derivation Tree
\rightarrow The hierarchical representation of derivation is called derivahon tree.
\rightarrow Left hand side of a produchon rule is a root mode node, at each level and right hand side of a produchon rule is divided into multiple branches.
eg:-

$$
\begin{aligned}
5 & \rightarrow x_{1} x_{2} x_{3} \\
x_{2} & \rightarrow x x_{4}
\end{aligned}
$$

fig:. Derivahon tree of $C M D$

hg:- Derivahoz tree of RMD
\# Design a Grammar that generates a string.
$\omega=a * b+b * a$. Also construct a deoivahon
sol? tree.
Let the grammar be $G\left(U, \sum, R, S\right)$

$$
\begin{aligned}
& v=\{s, \in\} \\
& \Sigma=\{a, b\}
\end{aligned}
$$

R consists of:

$$
\begin{gathered}
s \rightarrow s+s|s * s| a \mid b \\
Q S \in E+E \mid E * E \\
E \rightarrow a|b| s \\
\text { starting symbol }=s
\end{gathered}
$$

LMD
$L M D$

$$
S \rightarrow E \neq \quad[\because: S \rightarrow E * E]
$$

$$
\rightarrow a * E \quad[\quad \therefore \quad E \rightarrow a]
$$

$$
\rightarrow a * s \quad[\cdots E \rightarrow s]
$$

$$
\rightarrow a * E+E[\because \ddot{s}[\because E+E]
$$

$$
\rightarrow a \times b+E[\because E \rightarrow 5]
$$

$$
\rightarrow a * b+5 \quad[\because E \rightarrow s]
$$

$$
\rightarrow a * b+E * E[S \rightarrow E * E]
$$

$$
\rightarrow a * b+b * E[E \rightarrow b]
$$

$$
\rightarrow a * b+b * a \quad[\epsilon \rightarrow a]
$$

$$
\begin{aligned}
& S \rightarrow E+\epsilon \quad[s \rightarrow E+E] \\
& \rightarrow S+E \quad[E \rightarrow S] \\
& \rightarrow \epsilon * \epsilon+E \quad[S \rightarrow \epsilon * E] \\
& \rightarrow a * E+E \quad[\because E \rightarrow a] \\
& \rightarrow a * b+e[\because E \rightarrow b] \\
& \rightarrow a * b+s \quad[\because e \rightarrow s] \\
& \rightarrow a * b+E * E \quad[s \rightarrow E * E] \\
& \rightarrow a * b+b * E \quad[E \rightarrow b]
\end{aligned}
$$

Ambiguoces Grammar
\rightarrow If there exist multiple LMD or multiple RMD for the some string then the graminder is said to be ambiguous.
sole
Let $G(U, \varepsilon, R, S)$ be a grammer that serenader palindrome string over $\sum\{0,1$?

$$
\begin{aligned}
& v=\{s\} \\
& \Sigma=\{0,1\}
\end{aligned}
$$

R consists of :-

$$
s \rightarrow 0 S 0|151| 1|0| \varepsilon
$$

starting symbol $=s$

Let $\operatorname{Gn}(U, \Sigma, R, S)$ be a grammar that gererata palindrome string over $\sum\{0,1\}$ of even log

$$
\begin{aligned}
& u=\{5\} \\
& \Sigma=\{0,1\}
\end{aligned}
$$

R consists of:.

$$
\begin{aligned}
& s \rightarrow \text { os } \mid 151 \\
& \text { hing symbol }=s
\end{aligned}
$$

$$
\frac{E \quad \text { only eam }}{s \rightarrow \text { Oso }|151| 100)^{2}}
$$

